浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学先进材料实验室 高分子科学系 上海 200433
[ "邵正中,男,1964年生. 1981~1991年于复旦大学求学,获理学博士学位. 教育部“长江学者奖励计划”特聘教授、国家杰出青年基金获得者、英国皇家化学会会士. 主要研究方向为生物大分子,着重从高分子科学的角度对结构性生物大分子如动物丝及其相应丝蛋白和几丁质/壳聚糖等的结构、性能和仿生制备等方面进行研究,为其在结构性材料、生物医用材料和仿生矿化材料等领域中的多元化应用创造良好条件" ]
纸质出版日期:2021-1-3,
网络出版日期:2020-9-14,
收稿日期:2020-6-1,
修回日期:2020-7-12,
扫 描 看 全 文
杨公雯, 顾恺, 邵正中. 从天然动物丝到丝蛋白基材料的研究[J]. 高分子学报, 2021,52(1):16-28.
Gong-wen Yang, Kai Gu, Zheng-zhong Shao. The Investigation from Animal Silks to Silk Protein-based Materials[J]. Acta Polymerica Sinica, 2021,52(1):16-28.
杨公雯, 顾恺, 邵正中. 从天然动物丝到丝蛋白基材料的研究[J]. 高分子学报, 2021,52(1):16-28. DOI: 10.11777/j.issn1000-3304.2020.20142.
Gong-wen Yang, Kai Gu, Zheng-zhong Shao. The Investigation from Animal Silks to Silk Protein-based Materials[J]. Acta Polymerica Sinica, 2021,52(1):16-28. DOI: 10.11777/j.issn1000-3304.2020.20142.
作为具有优异综合力学性能的天然蛋白质纤维,丰产的动物丝特别是蚕丝长期伴随着人们的日常生活,近十余年来,各种具有特色的功能性丝蛋白基材料更是层出不穷. 但在探索动物丝和丝蛋白基材料的过程中,动物丝纤维是经由蚕或蜘蛛等动物的纺器而纺制得到的简单事实往往被忽视;换言之,动物丝实际上是动物对丝蛋白进行体内“加工”后的产物,也是丝蛋白基材料中的一种. 因此,天然动物丝中独特的各等级间构效关系与丝蛋白基材料的构效关系之间并不存在着必然的传承效应. 本文着重介绍了我们在对动物丝和丝蛋白基材料探索中的经验和体会,即在强调以丝蛋白分子链结构与性能及其之间的关系为研究重点的基础上,从比较和发掘各种天然动物丝的特性入手,进而了解丝蛋白分子链在本体和溶液中的行为,并通过对动物丝蛋白分子链聚集态结构的调控,以达到设计制备一系列多形貌和多功能的动物丝蛋白基材料的目的.
Animal silk
especially silkworm silk
which has a long history and good practical performance
is one of the outstanding representatives for natural biomaterials. Although both of silkworm silk and spider dragline silk (abbr. as spider silk below) are formed by natural proteins with the similar molecular weight as well as amino acid composition
the comprehensive mechanical properties (especial the toughness) of the silkworm cocoon silk are much worse than those of spider silk
Previously
it was reasonably thought that such contrast on the mechanical properties of the silks was caused by the different amino acid sequences of silkworm silk protein (named as fibroin) and spider silk protein (named as spidorin). Nevertheless
the properties of the silk fibers formed by these recombinant spidroins still show less competitive with those of natural animal silks (including silkworm silk) in terms of mechanical properties besides the extremely high cost for the production so far. Indeed
it must be recognized that animal silk is naturally processed and can be directly used as a fiber. Therefore
the reasonable routine for basic research and practical development of animal silk and silk protein-based materials should be (1) exploration of intrinsic properties and investigation of multi angle/multi-level structure-property relationships of natural silk fiber; (2) acquisition/regeneration of silk protein and the research on its molecular chain behavior; (3) according to the understanding on its molecular chain behavior based on the multi-level structure-property relationship of regenerated silk protein molecular chain
endowing silk protein based-materials with various sharps
morphologies as well as functions
especially those non-fiber materials
in order to achieve diversified applications. Based on a few of achievements in our group
this article reviewed the way mentioned above regarding the investigation on animal silks and fibroin-based materials
while emphasized that the hierarchical structure and structure-function relationship in the natural fiber could not spontaneously extend to silk protein-based materials. We also expected this concept would lead the research on the preparation of animal silk proteins represented non-physiologically active biomacromolecule-based materials with different morphologies and site-specific functions.
动物丝丝蛋白聚集态结构构效关系
Animal silkSilk proteinCondensed stateRelationship between structure and property
Zhang X, Baughman C B, Kaplan D L. Biomaterials , 2008 . 29 ( 14 ): 2217 - 2227 . DOI:10.1016/j.biomaterials.2008.01.022http://doi.org/10.1016/j.biomaterials.2008.01.022 .
Asakura T, Ashida J, Yamane T, Kameda T, Nakazawa Y, Ohgo K, Komatsu K. J Mol Biol , 2001 . 306 ( 2 ): 291 - 305 . DOI:10.1006/jmbi.2000.4394http://doi.org/10.1006/jmbi.2000.4394 .
Terry A E, Knight D P, Porter D, Vollrath F. Biomacromolecules , 2004 . 5 ( 3 ): 768 - 772 . DOI:10.1021/bm034381vhttp://doi.org/10.1021/bm034381v .
Zhou L, Chen X, Shao Z Z, Huang Y F, Knight D P. J Phys Chem B , 2005 . 109 ( 35 ): 16937 - 16945 . DOI:10.1021/jp050883mhttp://doi.org/10.1021/jp050883m .
Zhou G Q, Shao Z Z, Knight D P, Yan J P, Chen X. Adv Mater , 2009 . 21 ( 3 ): 366 - 370 . DOI:10.1002/adma.200800582http://doi.org/10.1002/adma.200800582 .
Pérez-Rigueiro J, Elices M, Llorca J, Viney C. J Appl Polym Sci , 2001 . 82 ( 8 ): 1928 - 1935 . DOI:10.1002/app.2038http://doi.org/10.1002/app.2038 .
Fu C J, Porter D, Chen X, Vollrath F, Shao Z Z. Adv Funct Mater , 2011 . 21 ( 4 ): 729 - 737 . DOI:10.1002/adfm.201001046http://doi.org/10.1002/adfm.201001046 .
Liu Y, Sponner A, Porter D, Vollrath F. Biomacromolecules , 2008 . 9 ( 1 ): 116 - 121 . DOI:10.1021/bm700877ghttp://doi.org/10.1021/bm700877g .
Vollrath F, Madsen B, Shao Z Z. Proc R Soc Lond B , 2001 . 268 ( 1483 ): 2339 - 2346 . DOI:10.1098/rspb.2001.1590http://doi.org/10.1098/rspb.2001.1590 .
Keten S, Xu Z P, Ihle B, Buehler M J. Nat Mater , 2010 . 9 ( 4 ): 359 - 367 . DOI:10.1038/nmat2704http://doi.org/10.1038/nmat2704 .
Shao Z Z, Vollrath F. Nature , 2002 . 418 ( 6899 ): 741 DOI:10.1038/418741ahttp://doi.org/10.1038/418741a .
Fu C, Porter D, Shao Z Z. Macromolecules , 2009 . 42 ( 20 ): 7877 - 7880 . DOI:10.1021/ma901321khttp://doi.org/10.1021/ma901321k .
Agarwal N, Hoagland D A, Farris R J. J Appl Polym Sci , 1997 . 63 ( 3 ): 401 - 410 . DOI:10.1002/(SICI)1097-4628(19970118)63:3<401::AID-APP17>3.0.CO;2-2http://doi.org/10.1002/(SICI)1097-4628(19970118)63:3<401::AID-APP17>3.0.CO;2-2 .
Porter D, Vollrath F, Shao Z Z. Eur Phys J E , 2005 . 16 ( 2 ): 199 - 206 . DOI:10.1140/epje/e2005-00021-2http://doi.org/10.1140/epje/e2005-00021-2 .
Miri V, Persyn O, Lefebvre J M, Seguela R. Eur Polym J , 2009 . 45 ( 3 ): 757 - 762 . DOI:10.1016/j.eurpolymj.2008.12.008http://doi.org/10.1016/j.eurpolymj.2008.12.008 .
Work R W. J Exp Biol , 1985 . 118 379 - 404.
Shao Z Z, Vollrath F, Sirichaisit J, Young R J. Polymer , 1999 . 40 ( 10 ): 2493 - 2500 . DOI:10.1016/S0032-3861(98)00475-3http://doi.org/10.1016/S0032-3861(98)00475-3 .
Shao Z Z, Vollrath F, Sirichaisit J, Young R J. Int J Biol Macromol , 1999 . 24 ( 2-3 ): 203 - 210 . DOI:10.1016/S0141-8130(98)00086-5http://doi.org/10.1016/S0141-8130(98)00086-5 .
Guinea G V, Elices M, Perez-Rigueiro J, Plaza G R. J Exp Biol , 2005 . 208 ( 1 ): 25 - 30 . DOI:10.1242/jeb.01344http://doi.org/10.1242/jeb.01344 .
Liu Y, Shao Z Z, Vollrath F. Nat Mater , 2005 . 4 ( 12 ): 901 - 905 . DOI:10.1038/nmat1534http://doi.org/10.1038/nmat1534 .
Gosline J M, Guerette P A, Ortlepp C S, Savage K N. J Exp Biol , 1999 . 202 ( 23 ): 3295 - 3303.
Yang Y, Chen X, Shao Z Z, Zhou P, Porter D, Knight P D, Vollrath F. Adv Mater , 2005 . 17 ( 1 ): 84 - 88 . DOI:10.1002/adma.200400344http://doi.org/10.1002/adma.200400344 .
Fu C J, Wang Y, Guan J, Chen X, Vollrath F, Shao Z Z. Mater Chem Front , 2019 . 3 ( 11 ): 2507 - 2513 . DOI:10.1039/C9QM00282Khttp://doi.org/10.1039/C9QM00282K .
Volkov V, Ferreira A V, Cavaco-Paulo A. Macromol Mater Eng , 2015 . 300 1199 - 1216 . DOI:10.1002/mame.201500179http://doi.org/10.1002/mame.201500179 .
Vollrath F, Holtet T, Thogersen H C, Frische S. Proc R Soc Lond B , 1996 . 263 147 - 151 . DOI:10.1098/rspb.1996.0023http://doi.org/10.1098/rspb.1996.0023 .
Ling S, Kaplan D L, Buehler M J. Nat Rev Mater , 2018 . 3 ( 4 ): 18016 DOI:10.1038/natrevmats.2018.16http://doi.org/10.1038/natrevmats.2018.16 .
Wang Q, Chen Q, Yang Y, Shao Z Z. Biomacromolecules , 2013 . 14 ( 1 ): 285 - 289 . DOI:10.1021/bm301741qhttp://doi.org/10.1021/bm301741q .
Giesa T, Buehler M J. Annu Rev Biophys , 2013 . 42 651 - 673 . DOI:10.1146/annurev-biophys-083012-130345http://doi.org/10.1146/annurev-biophys-083012-130345 .
Yarger J L, Cherry B R, van der Vaart A. Nat Rev Mater , 2018 . 3 ( 3 ): 18008 DOI:10.1038/natrevmats.2018.8http://doi.org/10.1038/natrevmats.2018.8 .
Chen X, Shao Z, Marinkovic N S, Miller L M, Zhou P, Chance M R. Biophys Chem , 2001 . 89 ( 1 ): 25 - 34 . DOI:10.1016/S0301-4622(00)00213-1http://doi.org/10.1016/S0301-4622(00)00213-1 .
Sun Y Y, Shao Z Z, Ma M H, Hu P, Liu Y S, Yu T Y. J Appl Polym Sci , 1997 . 65 ( 5 ): 959 - 966 . DOI:10.1002/(SICI)1097-4628(19970801)65:5<959::AID-APP14>3.0.CO;2-Nhttp://doi.org/10.1002/(SICI)1097-4628(19970801)65:5<959::AID-APP14>3.0.CO;2-N .
Sun Y Y, Shao ZZ, Hu P, Yu T Y. J Polym Sci, Part B: Polym Phys , 1997 . 35 ( 9 ): 1405 - 1414 . DOI:10.1002/(SICI)1099-0488(19970715)35:9<1405::AID-POLB10>3.0.CO;2-Ahttp://doi.org/10.1002/(SICI)1099-0488(19970715)35:9<1405::AID-POLB10>3.0.CO;2-A .
Li M, Lu S, Wu Z, Yan, H J, Mo J Y, Wang L H. J Appl Polym Sci , 2001 . 79 ( 12 ): 2185 - 2191 . DOI:10.1002/1097-4628(20010321)79:12<2185::AID-APP1026>3.0.CO;2-3http://doi.org/10.1002/1097-4628(20010321)79:12<2185::AID-APP1026>3.0.CO;2-3 .
Mathur A B, Tonelli A, Rathke T, Hudson S. Biopolymers , 1997 . 42 ( 1 ): 61 - 74 . DOI:10.1002/(SICI)1097-0282(199707)42:1<61::AID-BIP6>3.0.CO;2-#http://doi.org/10.1002/(SICI)1097-0282(199707)42:1<61::AID-BIP6>3.0.CO;2-# .
Freddi G, Pessina G, Tsukada M. Int J Biol Macromol , 1999 . 24 ( 2-3 ): 251 - 263 . DOI:10.1016/S0141-8130(98)00087-7http://doi.org/10.1016/S0141-8130(98)00087-7 .
Xu Y, Zhang Y, Shao H, Hu X C. Int J Biol Macromol , 2005 . 35 ( 3-4 ): 155 - 161 . DOI:10.1016/j.ijbiomac.2004.11.008http://doi.org/10.1016/j.ijbiomac.2004.11.008 .
Phillips D M, Drummy L F, Conrady D G, Fox D M, Naik R R, Stone M O, Trulove P C, de Long H C, Mantz R A. J Am Chem Soc , 2004 . 126 ( 44 ): 14350 - 14351 . DOI:10.1021/ja046079fhttp://doi.org/10.1021/ja046079f .
Zhang C, Chen X, Shao Z Z. ACS Biomater Sci Eng , 2016 . 2 ( 1 ): 12 - 18 . DOI:10.1021/acsbiomaterials.5b00149http://doi.org/10.1021/acsbiomaterials.5b00149 .
Holland C, Terry E, Porter D, Vollrath F. Nat Mater , 2006 . 5 ( 11 ): 870 - 874 . DOI:10.1038/nmat1762http://doi.org/10.1038/nmat1762 .
Wang Q, Yang Y H, Chen X, Shao Z Z. Biomacromolecules , 2012 . 13 ( 6 ): 1875 - 1881 . DOI:10.1021/bm300387zhttp://doi.org/10.1021/bm300387z .
Yao M, Su D H, Wang W Q, Chen X, Shao Z Z. ACS Appl Mater Interfaces , 2018 . 10 ( 44 ): 38466 - 38475 . DOI:10.1021/acsami.8b14521http://doi.org/10.1021/acsami.8b14521 .
Kratky O, Schauenstein E, Sekora A. Nature , 1950 . 165 ( 4191 ): 319 - 320 . DOI:10.1038/165319a0http://doi.org/10.1038/165319a0 .
He S J, Valluzzi R, Gido S P. Int J Biol Macromol , 1999 . 24 ( 2–3 ): 187 - 195 . DOI:10.1016/S0141-8130(99)00004-5http://doi.org/10.1016/S0141-8130(99)00004-5 .
Asakura T, Demura M, Date T, Miyashita N, Ogawa K, Williamson M P. Biopolymers , 1997 . 41 ( 2 ): 193 - 203 . DOI:10.1002/(SICI)1097-0282(199702)41:2<193::AID-BIP6>3.0.CO;2-Ohttp://doi.org/10.1002/(SICI)1097-0282(199702)41:2<193::AID-BIP6>3.0.CO;2-O .
Asakura T, Kuzuhara A, Tabeta R, Saito H. Macromolecules , 1985 . 18 ( 10 ): 1841 - 1845 . DOI:10.1021/ma00152a009http://doi.org/10.1021/ma00152a009 .
Asakura T, Murakami T. Macromolecules , 1985 . 18 ( 12 ): 2614 - 2619 . DOI:10.1021/ma00154a043http://doi.org/10.1021/ma00154a043 .
Gong Z G, Huang L, Yang Y H, Chen X, Shao Z Z. Chem Commun , 2009 . ( 48 ): 7506 - 7508 . DOI:10.1039/b914218ehttp://doi.org/10.1039/b914218e .
Valluzzi R, Gido S P, Zhang W P, Muller W S, Kaplan D L. Macromolecules , 1996 . 29 ( 27 ): 8606 - 8614 . DOI:10.1021/ma9517759http://doi.org/10.1021/ma9517759 .
Shao Zhengzhong(邵正中). Silkworm Silk, Spider Silk and Their Proteins(蚕丝、蜘蛛丝及其丝蛋白). Beijing(北京): Chemical Industry Press(化学工业出版社), 2015. 125
Jin H J, Kaplan D L. Nature , 2003 . 424 ( 6952 ): 1057 - 1061 . DOI:10.1038/nature01809http://doi.org/10.1038/nature01809 .
Lu Q, Hu X, Wang X Q, Kluge J A, Lu S Z, Cebe P, Kaplan D L. Acta Biomater , 2010 . 6 ( 4 ): 1380 - 1387 . DOI:10.1016/j.actbio.2009.10.041http://doi.org/10.1016/j.actbio.2009.10.041 .
Yang Y H, Shao Z Z, Chen X, Zhou P. Biomacromolecules , 2004 . 5 ( 3 ): 773 - 779 . DOI:10.1021/bm0343848http://doi.org/10.1021/bm0343848 .
Matsumoto A, Chen J S, Collette A L, Kim U J, Altman G H, Cebe P, Kaplan D L. J Phys Chem B , 2006 . 110 ( 43 ): 21630 - 21638 . DOI:10.1021/jp056350vhttp://doi.org/10.1021/jp056350v .
Hanawa T, Watanabe A, Tsuchiya T, Ikoma T, Hidaka M, Sugihara M. Chem Pharm Bull , 1995 . 43 ( 2 ): 284 - 288 . DOI:10.1248/cpb.43.284http://doi.org/10.1248/cpb.43.284 .
Kim U J, Park J Y, Li C M, Jin H J, Valluzzi R, Kaplan D L. Biomacromolecules , 2004 . 5 ( 3 ): 786 - 792 . DOI:10.1021/bm0345460http://doi.org/10.1021/bm0345460 .
Wang X, Kluge J A, Leisk G G, Kaplan D L. Biomaterials , 2008 . 29 ( 8 ): 1054 - 1064 . DOI:10.1016/j.biomaterials.2007.11.003http://doi.org/10.1016/j.biomaterials.2007.11.003 .
Yucel T, Cebe P, Kaplan D L. Biophys J , 2009 . 97 ( 7 ): 2044 - 2050 . DOI:10.1016/j.bpj.2009.07.028http://doi.org/10.1016/j.bpj.2009.07.028 .
Ling S J, Li C X, Adamcik J, Shao Z Z, Chen X, Mezzenga R. Adv Mater , 2014 . 26 ( 26 ): 4569 - 4574 . DOI:10.1002/adma.201400730http://doi.org/10.1002/adma.201400730 .
Wang L J, Xie H G, Qiao X Y, Goffin A, Hodgkinson T, Yuan X F, Sun K, Fuller G G. Langmuir , 2012 . 28 ( 1 ): 459 - 467 . DOI:10.1021/la2041373http://doi.org/10.1021/la2041373 .
Kharlampieva E, Zimnitsky D, Gupta M, Bergman K N, Kaplan D L, Naik R R, Tsukruk V V. Chem Mater , 2009 . 21 ( 13 ): 2696 - 2704 . DOI:10.1021/cm900073thttp://doi.org/10.1021/cm900073t .
Cheng C, Shao Z Z, Vollrath F. Adv Funct Mater , 2008 . 18 ( 15 ): 2172 - 2179 . DOI:10.1002/adfm.200701130http://doi.org/10.1002/adfm.200701130 .
Wen Jianchuan(文建川), Yao Jinrong(姚晋荣), Shao Zhenzhong(邵正中). Acta Polymerica Sinica(高分子学报) , 2011 . ( 1 ): 12 - 23.
Luo K Y, Yang Y H, Shao Z Z, Adv Funct Mater. 2016, 26(6): 872 – 880
Li Z, Zheng Z K, Yang Y H, Fang G Q, Yao J R, Shao Z Z, Chen X. ACS Sustainable Chem Eng , 2016 . 4 ( 3 ): 1500 - 1506 . DOI:10.1021/acssuschemeng.5b01463http://doi.org/10.1021/acssuschemeng.5b01463 .
Su D H, Yao M, Liu J, Zhong Y M, Chen X, Shao Z Z. ACS Appl Mater Interfaces , 2017 . 9 ( 20 ): 17489 - 17498 . DOI:10.1021/acsami.7b04623http://doi.org/10.1021/acsami.7b04623 .
Mi R X, Liu Y X, Chen X, Shao Z Z. Nanoscale , 2016 . 8 ( 48 ): 20096 - 20102 . DOI:10.1039/C6NR07359Jhttp://doi.org/10.1039/C6NR07359J .
Su D H, Jiang L B, Chen X, Dong J, Shao Z Z. ACS Appl Mater Interfaces , 2016 . 8 ( 15 ): 9619 - 9628 . DOI:10.1021/acsami.6b00891http://doi.org/10.1021/acsami.6b00891 .
Dong T, Mi R X, Wu M, Zhong N P, Zhao X, Chen X, Shao Z Z. J Mater Chem B , 2019 . 7 ( 27 ): 4328 - 4337 . DOI:10.1039/C9TB00783Khttp://doi.org/10.1039/C9TB00783K .
Fang G Q, Zheng Z K, Yao J R, Chen M, Tang Y Z, Zhong J J, Qi Z M, Li Z, Shao Z Z, Chen X. J Mater Chem B , 2015 . 3 ( 19 ): 3940 - 3947 . DOI:10.1039/C5TB00448Ahttp://doi.org/10.1039/C5TB00448A .
Dong Q L, Cai J Y, Wang H P, Chen S Y, Liu Y Z, Yao J R, Shao Z Z, Chen X. Acta Biomater , 2020 . 106 102 - 113 . DOI:10.1016/j.actbio.2020.01.045http://doi.org/10.1016/j.actbio.2020.01.045 .
Wang H P, Dong Q L, Yao J R, Shao Z Z, Ma J M, Chen X. Biomacromolecules , 2020 . 21 ( 4 ): 1596 - 1603 . DOI:10.1021/acs.biomac.0c00170http://doi.org/10.1021/acs.biomac.0c00170 .
Martel A, Burghammer M, Davies R J, Di Cola E, Vendrely C, Riekel C. J Am Chem Soc , 2008 . 130 17070 - 17074 . DOI:10.1021/ja806654thttp://doi.org/10.1021/ja806654t .
Wang S H, Xu T, Yang Y H, Shao Z Z. ACS Appl Mater Interfaces , 2015 . 7 ( 38 ): 21254 - 21262 . DOI:10.1021/acsami.5b05335http://doi.org/10.1021/acsami.5b05335 .
Wu M, Yang W H, Chen S, Yao J R, Shao Z Z, Chen X. J Mater Chem B , 2018 . 6 ( 8 ): 1179 - 1186 . DOI:10.1039/C7TB03113Khttp://doi.org/10.1039/C7TB03113K .
Tian Y, Jiang X J, Chen X, Shao Z Z, Yang W L. Adv Mater , 2014 . 26 ( 43 ): 7393 - 7398 . DOI:10.1002/adma.201403562http://doi.org/10.1002/adma.201403562 .
0
浏览量
76
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构