浏览全部资源
扫码关注微信
纤维材料改性国家重点实验室 东华大学材料科学与工程学院 上海 201620
E-mail: cyh@dhu.edu.cn Yan-hua Cheng, E-mail: cyh@dhu.edu.cn
纸质出版日期:2021-1-3,
网络出版日期:2020-7-28,
收稿日期:2020-6-1,
修回日期:2020-6-21,
扫 描 看 全 文
张君妍, 孟思, 陈文萍, 成艳华, 朱美芳. 高力学强度细菌纤维素气凝胶纤维的连续化制备[J]. 高分子学报, 2021,52(1):69-77.
Jun-yan Zhang, Si Meng, Wen-ping Chen, Yan-hua Cheng, Mei-fang Zhu. Continuous Bacterial Cellulose Aerogel Fibers with High Strength[J]. Acta Polymerica Sinica, 2021,52(1):69-77.
张君妍, 孟思, 陈文萍, 成艳华, 朱美芳. 高力学强度细菌纤维素气凝胶纤维的连续化制备[J]. 高分子学报, 2021,52(1):69-77. DOI: 10.11777/j.issn1000-3304.2020.20143.
Jun-yan Zhang, Si Meng, Wen-ping Chen, Yan-hua Cheng, Mei-fang Zhu. Continuous Bacterial Cellulose Aerogel Fibers with High Strength[J]. Acta Polymerica Sinica, 2021,52(1):69-77. DOI: 10.11777/j.issn1000-3304.2020.20143.
气凝胶纤维因其高外表面积和高柔韧性在能量管理系统中具有潜在应用而引起了广泛关注. 但是,目前制备的气凝胶纤维力学强度较低,限制了其实际应用. 为提高气凝胶纤维力学性能,在始终保持细菌纤维素(BC)纳米纤维处于湿态下,利用NaOH/尿素/硫脲复合溶剂直接低温溶解原生BC,获得透明的BC纺丝原液;通过湿法纺丝制备了BC水凝胶纤维,经过水洗和冷冻干燥后处理,制得BC气凝胶纤维. 采用偏光显微镜(POM)、
13
C核磁共振(
13
C-NMR)和高级旋转流变仪研究BC在复合溶剂中的溶解过程与状态;利用全反射傅里叶变换红外吸收光谱(ATR-FTIR)、X射线衍射(XRD)和热失重(TG)研究BC溶解前后结构与性能变化;利用场发射扫描电镜(FESEM)、全自动比表面积和孔径分布分析仪、单丝强力仪对获得的BC气凝胶纤维结构与性能进行表征. 结果表明,复合溶剂在−15 °C条件下可以直接溶解原生湿态BC,最高溶解浓度为3 wt%;采用湿法纺丝制得高度多孔的连续BC气凝胶纤维,比表面积高达192 m
2
/g且具有优异的力学性能,断裂强度和杨氏模量高达(9.36±1.68) MPa和(176±17.55) MPa,如0.4 mg BC气凝胶纤维可以支撑高于其本身质量5×10
4
倍的重物.
Aerogel fibers have attracted increasing interests due to their high outside specific surface area and high flexibility for applications in energy management systems. However
aerogel fibers usually suffer from weak mechanical properties and complicated fabrication process
thus severely restricting their broad application. In this paper
the never-dried bacterial cellulose (BC) with high molecular weight was firstly dissolved in NaOH/urea/thiourea aqueous solution at −15 °C. Followed by wet spinning
solvent exchange and freeze-drying
the BC aerogel fiber with high mechanical properties was simply obtained. The dissolution process was observed by polarized optical microscope (POM)
13
C nuclear magnetic resonance (NMR) and viscoelastic measurements. The variations of structure and properties on original BC and regenerated BC aerogel fibers were characterized by attenuated total reflection-Fourier transform infrared spectrometry (ATR-FTIR)
X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The structure and properties of BC aerogel fiber were studied by field emission scanning electron microscopy (FESEM)
specific surface area and pore size distribution analyzer (BET) and fiber strength tester. The results show that the never-dried BC can be dissolved in NaOH/urea/thiourea solution at low temperature. The maximum concentration of BC in the solution reaches up to 3 wt%. The resulted BC solution behaves as pseudoplastic fluid and stays stabe at room temperature. To fabricate BC aerogel fibers
wet-spinning technology and freeze-drying were utilized using BC solution as spinning dope. After regeneration
the crystal structure of BC transforms from I to II without derivatization. Meanwhile
highly porous structure in axial alignment with a high specific area of 192 m
2
/g was demonstrated in the BC aerogel fibers. Due to the high molecular weight of BC
strong intramolecular and intermolecular interactions
and molecular chain orientation
the tensile strength and Young’s modulus of BC aerogel fibers could reach up to (9.36±1.68) MPa and (176±17.55) MPa
which are higher than those of state-of-the-art aerogel fibers. The lightweight BC aerogel fiber can withstand a load of more than 5×10
4
times its own weight. Such BC aerogel fibers show high potentials in flexible biological scaffolds
drug carriers
bio-adsorbents and advanced thermal insulation textiles.
气凝胶纤维细菌纤维素低温溶解力学性能
Aerogel fiberBacterial celluloseLow temperature dissolutionMechanical properties
Husing N, Schubert U. Angew Chem Int Ed , 1998 . 37 ( 1-2 ): 22 - 45.
Pierre A C, Pajonk G M. Chem Rev , 2002 . 102 ( 11 ): 4243 - 4265 . DOI:10.1021/cr0101306http://doi.org/10.1021/cr0101306 .
Randall J P, Meador M A B, Jana S C. ACS Appl Mater Interfaces , 2011 . 3 ( 3 ): 613 - 626 . DOI:10.1021/am200007nhttp://doi.org/10.1021/am200007n .
Liu Q K, Frazier A W, Zhao X P, de La Cruz J A, Hess A J, Yang R G, Smalyukh I I. Nano Energy , 2018 . 48 266 - 274 . DOI:10.1016/j.nanoen.2018.03.029http://doi.org/10.1016/j.nanoen.2018.03.029 .
Xu X, Zhang Q Q, Hao M L, Hu Y, Lin Z Y, Peng L L, Wang T, Ren X X, Wang C, Zhao Z P, Wan C Z, Fei H L, Wang L, Zhu J, Sun H T, Chen W L, Du T, Deng B W, Cheng G J, Shakir I, Dames C, Fisher T S, Zhang X, Li H, Huang Y, Duan X F. Science , 2019 . 363 ( 6428 ): 723 - 727 . DOI:10.1126/science.aav7304http://doi.org/10.1126/science.aav7304 .
Zhang J Y, Cheng Y H, Tebyetekerwa M, Meng S, Zhu M F, Lu Y F. Adv Funct Mater , 2019 . 29 ( 15 ): 1806407 DOI:10.1002/adfm.201806407http://doi.org/10.1002/adfm.201806407 .
Si Y, Wang X Q, Dou L Y, Yu J Y, Ding B. Sci Adv , 2018 . 4 ( 4 ): eaas8925 DOI:10.1126/sciadv.aas8925http://doi.org/10.1126/sciadv.aas8925 .
Yu Z L, Yang N, Apostolopoulou-Kalkavoura V, Qin B, Ma Z Y, Xing W Y, Qiao C, Bergstrom L, Antonietti M, Yu S H. Angew Chem Int Ed , 2018 . 57 ( 17 ): 4538 - 4542 . DOI:10.1002/anie.201711717http://doi.org/10.1002/anie.201711717 .
Cui Y, Gong H X, Wang Y J, Li D W, Bai H. Adv Mater , 2018 . 30 ( 14 ): 1706807 DOI:10.1002/adma.201706807http://doi.org/10.1002/adma.201706807 .
Liu Z W, Lyu J, Fang D, Zhang X T. ACS Nano , 2019 . 13 ( 5 ): 5703 - 5711 . DOI:10.1021/acsnano.9b01094http://doi.org/10.1021/acsnano.9b01094 .
Yang H W, Wang Z Q, Liu Z, Cheng H, Li C L. Polymers , 2019 . 11 ( 11 ): 1899 DOI:10.3390/polym11111899http://doi.org/10.3390/polym11111899 .
Zhou J, Hsieh Y-L. Nano Energy , 2020 . 68 104305 DOI:10.1016/j.nanoen.2019.104305http://doi.org/10.1016/j.nanoen.2019.104305 .
Meng S, Zhang J Y, Chen W P, Wang X P, Zhu M F. Micropor Mesopor Mat , 2019 . 273 294 - 296 . DOI:10.1016/j.micromeso.2018.07.021http://doi.org/10.1016/j.micromeso.2018.07.021 .
Meng S, Zhang J Y, Xu W, Chen W P, Zhu L P, Zhou Z, Zhu M F. Sci China Technol Sci , 2019 . 62 ( 6 ): 958 - 964 . DOI:10.1007/s11431-018-9389-7http://doi.org/10.1007/s11431-018-9389-7 .
Xu Z, Zhang Y, Li P G, Gao C. ACS Nano , 2012 . 6 ( 8 ): 7103 - 7113 . DOI:10.1021/nn3021772http://doi.org/10.1021/nn3021772 .
Karadagli I, Schulz B, Schestakow M, Milow B, Gries T, Ratke L. J Supercrit Fluid , 2015 . 106 105 - 114 . DOI:10.1016/j.supflu.2015.06.011http://doi.org/10.1016/j.supflu.2015.06.011 .
Liu Hongzhi(刘宏治), Chen Feiyu(陈宇飞), Geng Biyao(耿璧垚), Ru Jing(茹静), Du Chungui(杜春贵), Jin Chundeng(金春德), Han Jingquan(韩景泉). Acta Polymerica Sinica(高分子学报) , 2016 . ( 5 ): 545 - 559 . DOI:10.11777/j.issn1000-3304.2016.15328http://doi.org/10.11777/j.issn1000-3304.2016.15328 .
Qiu K Y, Netravali A N. Polym Rev , 2014 . 54 ( 4 ): 598 - 626 . DOI:10.1080/15583724.2014.896018http://doi.org/10.1080/15583724.2014.896018 .
Ullah H, Santos H A, Khan T. Cellulose , 2016 . 23 ( 4 ): 2291 - 2314 . DOI:10.1007/s10570-016-0986-yhttp://doi.org/10.1007/s10570-016-0986-y .
Zhang Jinming(张金明), Zhang Jun(张军). Acta Polymerica Sinica(高分子学报) , 2010 . ( 12 ): 1376 - 1398.
Lv Ang(吕昂), Zhang Lina(张俐娜). Acta Polymerica Sinica(高分子学报) , 2007 . ( 10 ): 937 - 944 . DOI:10.3321/j.issn:1000-3304.2007.10.007http://doi.org/10.3321/j.issn:1000-3304.2007.10.007 .
Saito T, Nishiyama Y, Putaux J L, Vignon M, Isogai A. Biomacromolecules , 2006 . 7 ( 6 ): 1687 - 1691 . DOI:10.1021/bm060154shttp://doi.org/10.1021/bm060154s .
Saito T, Kimura S, Nishiyama Y, Isogai A. Biomacromolecules , 2007 . 8 ( 8 ): 2485 - 2491 . DOI:10.1021/bm0703970http://doi.org/10.1021/bm0703970 .
Chen Wenshuai(陈文帅), Yu Haipeng(于海鹏), Liu Yixing(刘一星), Jiang Naixiang(蒋乃翔), Chen Peng(陈鹏). Acta Polymerica Sinica(高分子学报) , 2010 . ( 11 ): 1320 - 1326 . DOI:10.3724/SP.J.1105.2010.09438http://doi.org/10.3724/SP.J.1105.2010.09438 .
Wang Mengzhu(王梦竹), Fang Ying(方颖), Li Qing(李勍), Bai Lulu(白璐璐), Yu Haipeng(于海鹏), Liu Shouxin(刘守新), Li Jian(李坚), Chen Wenshuai(陈文帅). Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 6 ): 586 - 597 . DOI:10.11777/j.issn1000-3304.2020.20037http://doi.org/10.11777/j.issn1000-3304.2020.20037 .
Olsson R T, Samir M, Salazar-Alvarez G, Belova L, Strom V, Berglund L A, Ikkala O, Nogues J, Gedde U W. Nat Nanotechnol , 2010 . 5 ( 8 ): 584 - 588 . DOI:10.1038/nnano.2010.155http://doi.org/10.1038/nnano.2010.155 .
Cai J, Zhang L N, Zhou J P, Qi H S, Chen H, Kondo T, Chen X M, Chu B. Adv Mater , 2007 . 19 ( 6 ): 821 - 825 . DOI:10.1002/adma.200601521http://doi.org/10.1002/adma.200601521 .
Cai J, Liu Y T, Zhang L N. J Polym Sci, Part B: Polym Phys , 2006 . 44 ( 21 ): 3093 - 3101 . DOI:10.1002/polb.20938http://doi.org/10.1002/polb.20938 .
Duan Bo(段博), Tu Hu(涂虎), Zhang Lina(张俐娜). Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 1 ): 66 - 86 . DOI:10.11777/j.issn1000-3304.2020.19160http://doi.org/10.11777/j.issn1000-3304.2020.19160 .
Mao Yunzeng(毛云增), Wang Hao(王昊), Wang Dong(汪东), Shen Heng(沈衡), Yang Shuguang(杨曙光),Ma Jinghong(马敬红), Zhao Ning(赵宁), Liu Ruigang(刘瑞刚), Xu Jiang(徐坚). Acta Polymerica Sinica(高分子学报) , 2014 . ( 7 ): 1023 - 1028 . DOI:10.11777/j.issn1000-3304.2014.14004http://doi.org/10.11777/j.issn1000-3304.2014.14004 .
Jin H J, Zha C X, Gu L X. Carbohydr Res , 2007 . 342 ( 6 ): 851 - 858 . DOI:10.1016/j.carres.2006.12.023http://doi.org/10.1016/j.carres.2006.12.023 .
Zhang S, Li F X, Yu J Y, Hsieh Y L. Carbohyd Polym , 2010 . 81 ( 3 ): 668 - 674 . DOI:10.1016/j.carbpol.2010.03.029http://doi.org/10.1016/j.carbpol.2010.03.029 .
Jiang Z W, Fang Y, Xiang J F, Ma Y P, Lu A, Kang H L, Huang Y, Guo H X, Liu R G, Zhang L N. J Phys Chem B , 2014 . 118 ( 34 ): 10250 - 10257 . DOI:10.1021/jp501408ehttp://doi.org/10.1021/jp501408e .
Zhang Shuai(张帅). Study on Preparation, Structure and Properties of Regenerated Cellulose Fibers From a Novel Solvent System (新型溶剂制备再生纤维素纤维及其结构性能研究). Doctoral Dissertation of Donghua University (东华大学博士学位论文), 2010.
Cai J, Zhang L N. Biomacromolecules , 2006 . 7 ( 1 ): 183 - 189 . DOI:10.1021/bm0505585http://doi.org/10.1021/bm0505585 .
Cai J, Kimura S, Wada M, Kuga S, Zhang L N. ChemSusChem , 2008 . 1 149 - 154 . DOI:10.1002/cssc.200700039http://doi.org/10.1002/cssc.200700039 .
Cai J, Liu S L, Feng J, Kimura S, Wada M, Kuga S, Zhang L N. Angew Chem Int Ed , 2012 . 51 ( 9 ): 2076 - 2079 . DOI:10.1002/anie.201105730http://doi.org/10.1002/anie.201105730 .
Xu Qi(徐琪), Zhang Chuanjie(张传杰), Liu Guang(刘广), Zhu Ping(朱平). Journal of Functional Polymers(功能高分子学报) , 2009 . 22 ( 4 ): 349 - 355.
Hou K, Hu Z X, Mugaanire I T, Li C Q, Chen G Y, Zhu M F. Polymer , 2019 . 183 121903 DOI:10.1016/j.polymer.2019.121903http://doi.org/10.1016/j.polymer.2019.121903 .
Hou K, Nie Y L, Tendo Mugaanire I, Guo Y, Zhu M F. Chem Eng J , 2020 . 382 122948 DOI:10.1016/j.cej.2019.122948http://doi.org/10.1016/j.cej.2019.122948 .
0
浏览量
96
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构