浏览全部资源
扫码关注微信
1.中国科学技术大学 中国科学院软物质化学重点实验室 高分子科学与工程系
2. 合肥微尺度物质科学国家研究中心 合肥 230026
[ "徐航勋,男,1983年生. 2006年毕业于中国科学技术大学获学士学位,2011年博士毕业于美国伊利诺伊大学香槟分校化学系,导师为Kenneth S. Suslick教授. 博士毕业后在伊利诺伊大学香槟分校材料科学与工程系从事柔性电子技术方面研究,导师为John A. Rogers教授. 2013年加入中国科学技术大学高分子科学与工程系,任教授、博士生导师. 2018年获中国化学会青年化学奖. 目前主要从事功能高分子材料在能量转换与柔性电子技术等交叉领域的应用研究" ]
纸质出版日期:2020-9-30,
网络出版日期:2020-8-20,
收稿日期:2020-6-12,
修回日期:2020-7-3,
扫 描 看 全 文
张颖, 王磊, 徐航勋. 高分子光催化材料表面活性位点及其反应机理探究[J]. 高分子学报, 2020,51(11):1201-1213.
Ying Zhang, Lei Wang, Hang-xun Xu. Investigations into the Surface Active Sites and Reaction Mechanisms in Polymer Photocatalysts[J]. Acta Polymerica Sinica, 2020,51(11):1201-1213.
张颖, 王磊, 徐航勋. 高分子光催化材料表面活性位点及其反应机理探究[J]. 高分子学报, 2020,51(11):1201-1213. DOI: 10.11777/j.issn1000-3304.2020.20153.
Ying Zhang, Lei Wang, Hang-xun Xu. Investigations into the Surface Active Sites and Reaction Mechanisms in Polymer Photocatalysts[J]. Acta Polymerica Sinica, 2020,51(11):1201-1213. DOI: 10.11777/j.issn1000-3304.2020.20153.
共轭高分子光催化材料因其化学结构可设计性强、电子结构可调性高,特别是其表面催化活性位点能够进行合理构筑等独特优势,近年来逐渐成为光催化研究领域的一类新兴材料. 系统研究高分子光催化材料的反应机理与调控机制对提高催化反应效率与反应产物选择性非常关键. 虽然关于高分子光催化材料的研究已经有超过30年的历史,但是目前高分子光催化材料仍然面临本征催化活性偏低及催化机理不清楚的难题. 本专论重点探讨近年来利用多种原位表征技术结合理论计算揭示高分子光催化材料中非金属有机官能团作为本征催化活性中心参与光催化反应时的表面反应活性位点和相关反应机理方面的研究进展,并展望未来共轭高分子光催化材料在光催化能量转换应用领域的挑战和机遇.
Utilizing photocatalytic materials to convert solar energy into sustainable chemical fuels is a promising route to address the global energy crisis and environmental issues. Recently
conjugated polymer-based semiconductor materials have gradually emerged as a new class of materials in photocatalysis due to their highly controllable chemical structures with tunable electronic structures. Especially
their surface active sites can be rationally constructed. Systematic investigations into the reaction pathways and the associated regulating methodologies are highly desirable to enhance the reaction efficiency and selectivity. Although it has been more than 30 years since the first report of using polymer photocatalysts for photocatalytic water splitting
the intrinsic activity of polymer photocatalysts is still very low and elucidating the reaction mechanisms is still challenging. This feature article summarizes the recent progress in characterizing surface active sites and corresponding reaction pathways in photocatalytic reactions using metal-free polymer photocatalysts. Meanwhile
future opportunities and challenges in developing polymer photocatalysts for photocatalytic energy conversion are included. It is expected to provide crucial and significant insights for designing novel polymer photocatalysts with high activity and stability in the near future.
共轭高分子光催化活性位点反应路径太阳能转换
Conjugated polymersPhotocatalysisActive sitesReaction pathwaysSolar energy conversion
Qi J, Zhang W, Cao R. Adv Energy Mater , 2018 . 5 ( 8 ): 1701620 DOI:10.1002/aenm.201701620http://doi.org/10.1002/aenm.201701620 .
Gong J, Li C, Wasielewski M R. Chem Soc Rev , 2019 . 48 ( 7 ): 1862 - 1864 . DOI:10.1039/C9CS90020Ahttp://doi.org/10.1039/C9CS90020A .
EI-Khouly M E, EI-Mohsnawy E, Fukuzumi S. J Photochem Photobiol C , 2017 . 31 36 - 83 . DOI:10.1016/j.jphotochemrev.2017.02.001http://doi.org/10.1016/j.jphotochemrev.2017.02.001 .
Zhang Hang(张杭), Wang Lei(王磊), Xu Hangxun(徐航勋). Journal of Functional Polymers(功能高分子学报) , 2019 . 32 ( 2 ): 140 .
Zhang B, Sun L. Chem Soc Rev , 2019 . 48 ( 7 ): 2216 - 2264 . DOI:10.1039/C8CS00897Chttp://doi.org/10.1039/C8CS00897C .
Li X B, Tung C H, Wu L Z. Nat Rev Chem , 2018 . 2 ( 8 ): 160 - 173 . DOI:10.1038/s41570-018-0024-8http://doi.org/10.1038/s41570-018-0024-8 .
Wang L, Zheng X, Chen L, Xiong Y, Xu H. Angew Chem Int Ed , 2018 . 57 ( 13 ): 3454 - 3458 . DOI:10.1002/anie.201710557http://doi.org/10.1002/anie.201710557 .
Zhang X, Wang L, Chen L, Ma X, Xu H. Chinese J Polym Sci , 2019 . 37 ( 2 ): 101 - 114 . DOI:10.1007/s10118-019-2171-xhttp://doi.org/10.1007/s10118-019-2171-x .
Song H, Liu D, Yang J, Wang L, Xu H, Xiong Y. ChemNanoMat , 2017 . 3 ( 1 ): 22 - 26 . DOI:10.1002/cnma.201600203http://doi.org/10.1002/cnma.201600203 .
Hu Y, Zhan F, Wang Q, Sun Y, Yu C, Zhao X, Wang H, Long R, Zhang G, Gao C, Zhang W, Jiang J, Tao Y, Xiong Y. J Am Chem Soc , 2020 . 142 ( 12 ): 5618 - 5626 . DOI:10.1021/jacs.9b12443http://doi.org/10.1021/jacs.9b12443 .
Fujishima A, Honda K. Nature , 1972 . 238 ( 5358 ): 37 - 38 . DOI:10.1038/238037a0http://doi.org/10.1038/238037a0 .
Förster C, Heinze K. Chem Soc Rev , 2020 . 49 ( 4 ): 1057 - 1070 . DOI:10.1039/C9CS00573Khttp://doi.org/10.1039/C9CS00573K .
Yan Y, Zhai D, Liu Y, Gong J, Chen J, Zan P, Zeng Z, Li S, Huang W, Chen P. ACS Nano , 2020 . 14 ( 1 ): 1185 - 1195 . DOI:10.1021/acsnano.9b09554http://doi.org/10.1021/acsnano.9b09554 .
Xiao M, Wang Z, Lyu M, Luo B, Wang S, Liu G, Cheng H M, Wang L. Adv Mater , 2019 . 31 ( 38 ): 1801369 DOI:10.1002/adma.201801369http://doi.org/10.1002/adma.201801369 .
Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S T, Zhong J, Kang Z. Science , 2015 . 347 ( 6225 ): 970 - 974 . DOI:10.1126/science.aaa3145http://doi.org/10.1126/science.aaa3145 .
Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y. Chem Rev , 2018 . 118 ( 16 ): 7744 - 7803 . DOI:10.1021/acs.chemrev.8b00288http://doi.org/10.1021/acs.chemrev.8b00288 .
Chen S, Takata T, Domen K. Nat Rev Mater , 2017 . 2 17050 DOI:10.1038/natrevmats.2017.50http://doi.org/10.1038/natrevmats.2017.50 .
Wang L, Zhang Y, Chen L, Xu H, Xiong Y. Adv Mater , 2018 . 30 ( 48 ): 1801955 DOI:10.1002/adma.201801955http://doi.org/10.1002/adma.201801955 .
Shiraishi Y, Kanazawa S, Sugano Y, Tsukamoto D, Sakamoto H, Ichikawa S, Hirai T. ACS Catal , 2014 . 4 ( 3 ): 774 - 780 . DOI:10.1021/cs401208chttp://doi.org/10.1021/cs401208c .
Wang Z, Yang X, Yang T, Zhao Y, Wang F, Chen Y, Zeng J H, Yan C, Huang F, Jiang J X. ACS Catal , 2018 . 8 ( 9 ): 8590 - 8596 . DOI:10.1021/acscatal.8b02607http://doi.org/10.1021/acscatal.8b02607 .
Zhang X, Luo X, Zheng X, Wu X, Xu H. Small , 2019 . 15 ( 43 ): 1903643 DOI:10.1002/smll.201903643http://doi.org/10.1002/smll.201903643 .
Che W, Cheng W, Yao T, Tang F, Liu W, Su H, Huang Y, Liu Q, Liu J, Hu F, Pan Z, Sun Z, Wei S. J Am Chem Soc , 2017 . 139 ( 8 ): 3021 - 3026 . DOI:10.1021/jacs.6b11878http://doi.org/10.1021/jacs.6b11878 .
Sun J, Xu J, Grafmueller A, Huang X, Liedel C, Algara-Siller G, Willinger M, Yang C, Fu Y, Wang X, Shalom M. Appl Catal B , 2017 . 205 ( 15 ): 1 - 10.
Wei Z, Liu M, Zhang Z, Yao W, Tan H, Zhu Y. Energy Environ Sci , 2018 . 11 ( 9 ): 2581 - 2589 . DOI:10.1039/C8EE01316Khttp://doi.org/10.1039/C8EE01316K .
Li W, Hu Y, Rodríguez-Castellón E, Bandosz T J. J Mater Chem A , 2017 . 5 ( 31 ): 16315 - 16325 . DOI:10.1039/C7TA02051Ahttp://doi.org/10.1039/C7TA02051A .
Wang Q, Li J, Tu X, Liu H, Shu M, Si R, Ferguson C T J, Zhang K A I, Li R. Chem Mater , 2020 . 32 ( 2 ): 734 - 743 . DOI:10.1021/acs.chemmater.9b03708http://doi.org/10.1021/acs.chemmater.9b03708 .
Chang W, Chen C, Dong H, Zhang C. Sci Bull , 2017 . 62 ( 9 ): 665 - 668 . DOI:10.1016/j.scib.2017.04.005http://doi.org/10.1016/j.scib.2017.04.005 .
Merkx M, Kopp D A, Sazinsky M H, Blazyk J L, Müller J, Lippard S J. Angew Chem In Ed , 2001 . 40 ( 15 ): 2782 - 2807 . DOI:10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-Phttp://doi.org/10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-P .
Thorhallsson A T, Bjornsson R. Inorg Chem , 2019 . 58 ( 3 ): 1886 - 1894 . DOI:10.1021/acs.inorgchem.8b02669http://doi.org/10.1021/acs.inorgchem.8b02669 .
Brown K A, Harris D F, Wilker M B, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters J W, Seefeldt L C, King P W. Science , 2016 . 352 ( 6284 ): 448 - 450 . DOI:10.1126/science.aaf2091http://doi.org/10.1126/science.aaf2091 .
Wang J, Xia T, Wang L, Zheng X, Qi Z, Gao C, Zhu J, Li Z, Xu H, Xiong Y. Angew Chem In Ed , 2018 . 57 ( 50 ): 16447 - 16451 . DOI:10.1002/anie.201810550http://doi.org/10.1002/anie.201810550 .
Fu Z, Wang X, Gardner A M, Wang X, Chong S Y, Neri G, Cowan A, Liu L, Li X, Vogel A, Clowes R, Bilton M, Chen L, Sprick R S, Cooper A I. Chem Sci , 2020 . 11 ( 2 ): 543 - 550 . DOI:10.1039/C9SC03800Khttp://doi.org/10.1039/C9SC03800K .
Ding Y, Chen Y, Zhang X, Chen L, Dong Z, Jiang H, Xu H, Zhou H. J Am Chem Soc , 2017 . 139 ( 27 ): 9136 - 9139 . DOI:10.1021/jacs.7b04829http://doi.org/10.1021/jacs.7b04829 .
Cui X, Li H, Wang Y, Hu Y, Hua L, Li H, Han X, Liu Q, Yang F, He L, Chen X, Li Q, Xiao J, Deng D, Bao X. Chem , 2018 . 4 ( 8 ): 1902 - 1910 . DOI:10.1016/j.chempr.2018.05.006http://doi.org/10.1016/j.chempr.2018.05.006 .
Yuan J, Zhang W, Li X, Yang J. Chem Commun , 2018 . 54 ( 18 ): 2284 - 2287 . DOI:10.1039/C7CC08713Fhttp://doi.org/10.1039/C7CC08713F .
Pan Z, Zhang G, Wang X. Angew Chem In Ed , 2019 . 58 ( 21 ): 7102 - 7106 . DOI:10.1002/anie.201902634http://doi.org/10.1002/anie.201902634 .
Wang S, Yi L, Halpert J E, Lai X, Liu Y, Cao H, Yu R, Wang D, Li Y. Small , 2012 . 8 ( 2 ): 265 - 271 . DOI:10.1002/smll.201101686http://doi.org/10.1002/smll.201101686 .
Li Y, Wang L, Low J, Wu D, Hu C, Jiang W, Ma J, Wang C, Long R, Song L, Xu H, Xiong Y. Chin Chem Lett , 2020 . 31 ( 1 ): 231 - 234 . DOI:10.1016/j.cclet.2019.04.022http://doi.org/10.1016/j.cclet.2019.04.022 .
Kuriki R, Sekizawa K, Ishtani O, Maeda K. Angew Chem In Ed , 2015 . 54 ( 8 ): 2406 - 2409 . DOI:10.1002/anie.201411170http://doi.org/10.1002/anie.201411170 .
Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater , 2009 . 8 ( 1 ): 76 - 80 . DOI:10.1038/nmat2317http://doi.org/10.1038/nmat2317 .
Zhang G, Lan Z A, Lin L, Lin S, Wang X. Chem Sci , 2016 . 7 ( 5 ): 3062 - 3066 . DOI:10.1039/C5SC04572Jhttp://doi.org/10.1039/C5SC04572J .
Guo F, Shi W, Zhu C, Li H, Kang Z. Appl Catal B , 2018 . 226 ( 15 ): 412 - 420 . DOI:10.1016/j.apcatb.2017.12.064http://doi.org/10.1016/j.apcatb.2017.12.064 .
Liu W, Cao L, Cheng W, Cao Y, Liu X, Zhang W, Mou X, Jin L, Zheng X, Che W, Liu Q, Yao T, Wei S. Angew Chem Int Ed , 2017 . 56 ( 32 ): 9312 - 9317 . DOI:10.1002/anie.201704358http://doi.org/10.1002/anie.201704358 .
Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong P K. Adv Mater , 2018 . 30 ( 10 ): 1706108 DOI:10.1002/adma.201706108http://doi.org/10.1002/adma.201706108 .
Sun Z, Wang H, Wu Z, Wang L. Catal Today , 2018 . 300 ( 1 ): 160 - 172.
Maeda K, Sekizawa K, Ishitani O. Chem Commun , 2013 . 49 ( 86 ): 10127 - 10129 . DOI:10.1039/c3cc45532ghttp://doi.org/10.1039/c3cc45532g .
Maeda K. Adv Mater , 2019 . 31 ( 25 ): 1808205 DOI:10.1002/adma.201808205http://doi.org/10.1002/adma.201808205 .
Fu Y, Zhu X, Huang L, Zhang X, Zhang F, Zhu W. Appl Catal B , 2018 . 239 ( 30 ): 46 - 51 . DOI:10.1016/j.apcatb.2018.08.004http://doi.org/10.1016/j.apcatb.2018.08.004 .
Yang S, Hu W, Zhang X, He P, Pattengale B, Liu C, Cendejas M, Hermans L, Zhang X, Zhang J, Huang J. J Am Chem Soc , 2018 . 140 ( 44 ): 14614 - 14618 . DOI:10.1021/jacs.8b09705http://doi.org/10.1021/jacs.8b09705 .
Lu M, Liu J, Li Q, Zhang M, Liu M, Wang J L, Yuan D Q, Lan Y Q. Angew Chem Int Ed , 2019 . 131 ( 36 ): 12522 - 12527 . DOI:10.1002/ange.201906890http://doi.org/10.1002/ange.201906890 .
Xu Y, Jin S, Xu H, Nagai A, Jiang D. Chem Soc Rev , 2013 . 42 ( 20 ): 8012 - 8031 . DOI:10.1039/c3cs60160ahttp://doi.org/10.1039/c3cs60160a .
Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science , 2016 . 351 ( 6271 ): 361 - 365 . DOI:10.1126/science.aad0832http://doi.org/10.1126/science.aad0832 .
Zhao Y, WAN j, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J, Gu L, Liu L, Zhao H, Li Y, Wang D. Nat Chem , 2018 . 10 ( 9 ): 924 - 931 . DOI:10.1038/s41557-018-0100-1http://doi.org/10.1038/s41557-018-0100-1 .
Légaré M A, Bélanger-Chabot G, Dewhurst R D, Welz E, Krummenacher I, Engels B, Braunschweig H. Science , 2018 . 359 ( 23 ): 896 - 900 . DOI:10.1126/science.aaq1684http://doi.org/10.1126/science.aaq1684 .
Cheng Z, Wang L, He Y, Chen X, Wu X, Xu H, Liao Y. Polym Chem , 2020 . 11 ( 20 ): 3393 - 3397 . DOI:10.1039/D0PY00249Fhttp://doi.org/10.1039/D0PY00249F .
Gao X, Shu C, Zhang C, Ma W, Ren S B, Wang F, Chen Y, Zeng J H, Jiang J X. J Mater Chem A , 2020 . 8 ( 5 ): 2404 - 2411 . DOI:10.1039/C9TA13212Khttp://doi.org/10.1039/C9TA13212K .
Zhang G, Zang S, Wang X. ACS Catal , 2015 . 5 ( 2 ): 941 - 947 . DOI:10.1021/cs502002uhttp://doi.org/10.1021/cs502002u .
Zhao Y, Jia X, Waterhouse G I N, Wu L Z, Tung C H, O’Hare D, Zhang T. Adv Energy Mater , 2016 . 6 ( 6 ): 1501974 DOI:10.1002/aenm.201501974http://doi.org/10.1002/aenm.201501974 .
Wang L, Wan Y, Ding Y, Niu Y, Xiong Y, Wu X, Xu H. Nanoscale , 2017 . 9 ( 12 ): 4090 - 4096 . DOI:10.1039/C7NR00534Bhttp://doi.org/10.1039/C7NR00534B .
Spitler E L, Koo B T, Novotney J L, Colson J W, Uribe-Romo F J, Gutierrez G D, Clancy P, Dichtel W R. J Am Chem Soc , 2011 . 133 ( 48 ): 19416 - 19421 . DOI:10.1021/ja206242vhttp://doi.org/10.1021/ja206242v .
Ghosh S, Kouamé N A, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert P H, Remita H. Nat Mater , 2015 . 14 ( 5 ): 505 - 511 . DOI:10.1038/nmat4220http://doi.org/10.1038/nmat4220 .
Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomäcker R, Thomas A, Schmidt J. J Am Chem Soc , 2018 . 140 ( 4 ): 1423 - 1427 . DOI:10.1021/jacs.7b11255http://doi.org/10.1021/jacs.7b11255 .
Wang L, Wan Y, Ding Y, Wu S, Zhang Y, Zhang X, Zhang G, Xiong Y, Wu X, Yang J, Xu H. Adv Mater , 2017 . 29 ( 38 ):1702428 DOI:10.1002/adma.201702428http://doi.org/10.1002/adma.201702428 .
Wang L, Wan Y, Cheng H, Qi Z, Zheng X, Wu X, Xu H. ChemCatChem , 2019 . 11 ( 24 ): 6236 - 6243 . DOI:10.1002/cctc.201901500http://doi.org/10.1002/cctc.201901500 .
Chen L, Wang L, Wan Y, Zhang Y, Qi Z, Wu X, Xu H. Adv Mater , 2020 . 32 ( 2 ): 1904433 DOI:10.1002/adma.201904433http://doi.org/10.1002/adma.201904433 .
0
浏览量
71
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构