浏览全部资源
扫码关注微信
1.中国科学院重庆绿色智能技术研究院 重庆市3D打印应用工程技术研究中心 重庆 400714
2.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京 100190
3.中国科学院大学 北京 100049
[ "高霞,女, 1989年生. 中国科学院重庆绿色智能技术研究院助理研究员. 2010年于燕山大学获学士学位, 2015年于中国科学院化学研究所获博士学位. 2016年入选中国科学院“西部之光”人才计划. 主要从事聚合物材料的3D打印成型研究,包括3D打印材料性能调控、成型件结构与性能关系等" ]
[ "苏允兰,女,1974年生. 中国科学院化学研究所副研究员. 1996年获中国海洋大学海洋化学系理学学士,2000年获中国科学院生态环境研究中心理学硕士,2003年获北京大学化学与分子工程学院理学博士. 2004 ~ 2006年清华大学化学系博士后. 2013年10月 ~ 2014年10月德国汉堡工业大学访问学者. 主要从事聚合物纳米复合材料成型中的界面结构调控和性能研究. 已发表学术论文60余篇" ]
纸质出版日期:2020-9-30,
网络出版日期:2020-9-8,
收稿日期:2020-6-13,
修回日期:2020-7-23,
扫 描 看 全 文
高霞, 戚顺新, 苏允兰, 黎静, 王笃金. 熔融沉积成型加工的结晶性聚合物结构与性能[J]. 高分子学报, 2020,51(11):1214-1226.
Xia Gao, Shun-xin Qi, Yun-lan Su, Jing Li, Du-jin Wang. Hierarchical Structures and Mechanical Performances of Semicrystalline Polymer Parts Fabricated by Means of Fused Deposition Modeling[J]. Acta Polymerica Sinica, 2020,51(11):1214-1226.
高霞, 戚顺新, 苏允兰, 黎静, 王笃金. 熔融沉积成型加工的结晶性聚合物结构与性能[J]. 高分子学报, 2020,51(11):1214-1226. DOI: 10.11777/j.issn1000-3304.2020.20154.
Xia Gao, Shun-xin Qi, Yun-lan Su, Jing Li, Du-jin Wang. Hierarchical Structures and Mechanical Performances of Semicrystalline Polymer Parts Fabricated by Means of Fused Deposition Modeling[J]. Acta Polymerica Sinica, 2020,51(11):1214-1226. DOI: 10.11777/j.issn1000-3304.2020.20154.
熔融沉积成型(fused deposition modeling,FDM)作为一种新型的聚合物加工方式,可制备外形复杂、性能可靠、功能集成的聚合物制品,并随着新打印工艺和新材料体系的不断涌现,显示出巨大的应用和发展潜力. 但层层堆积的加工方式为FDM成型件引入了薄弱层间结合界面和较大残余内应力,限制了可FDM加工的聚合物材料种类,并制约着FDM成型件的性能和功能. 本文结合FDM加工原理分析了可FDM加工的聚合物材料特性,重点关注FDM成型件的微观结构包括多层次聚集态结构、层间结合界面,总结FDM成型件的宏观力学性能及其各向异性,以此构建FDM成型的聚合物结构-性能关系,并展望高性能FDM成型件的发展前景.
Fused deposition modeling (FDM) as the most common additive manufacturing technique
is a revolutionary processing method for polymer materials. FDM technique can build complicated and multifunctional components by selectively depositing one or two kinds of polymer materials layer-by-layer according to the predetermined paths. Further
the recent development of polymer nanocomposites and printing devices has broadened the applicability of FDM technique to fabricate lightweight
customized and multifunctional products for medical
electronics
aerospace and automotive areas. Although the ability to fabricate end-use products is expanding
the evolution of FDM into a fully manufacture tool is limited by several challenges including narrow material selection
weak interlayer bond and poor surface quality. In order to acquire a good knowledge of the processing-structure-performance relationship for polymer parts fabricated by FDM technique
this review firstly analyses the stringent requirements for polymer materials compatible with FDM platform
then provides a comprehensive overview on the crystallization kinetics
hierarchical structures as well as the mechanical performance of FDM-printed parts. For semicrystalline polymer materials
high shear and extension field in the nozzle is found to accelerate the crystallization kinetics and induce oriented structures and shish-kebab morphology. In this sense
FDM-printed parts can achieve mechanical properties superior to their counterparts by means of injection molding. However
the intrinsic layer-wise deposition in conjunction with non-isothermal profile during a typical FDM process tend to introduce weak bond interfaces as well as residual stresses in FDM-printed parts
leading to anisotropic mechanical properties and serious dimensional errors. This in turn puts complicated requirements for polymer materials for FDM platform
including good feeding properties (
e.g.
elastic modulus
E
/melt viscosity
η
larger than 3.24 × 10
5
s
−1
) and excellent printing properties (
e.g.
low coefficient of thermal expansion and appropriate melt viscosity). Recent efforts suggest that adding organic/inorganic additives to physically modified polymer materials is a simple and effective way to overcome both limited variety of semicrystalline materials and weak interlayer bond issues for FDM technique. In the near future
polymer composites should be well designed and screened to fit for FDM platform and also the processing-structure-property relationship for FDM-printed parts should be explored in detail so as to obtain polymer articles with excellent properties and meet the growing requirements from various areas.
熔融沉积成型结晶性聚合物材料多层次结构各向异性
Fused deposition modelingSemi-crystalline polymersHierarchical structuresMechanical anisotropy
Wu J, Huang L, Zhao Q, Xie T. Chinese J Polym Sci , 2018 . 36 ( 5 ): 563 - 575 . DOI:10.1007/s10118-018-2089-8http://doi.org/10.1007/s10118-018-2089-8 .
Wang X, Jiang M, Zhou Z, Gou J, Hui D. Compos B , 2017 . 110 442 - 458 . DOI:10.1016/j.compositesb.2016.11.034http://doi.org/10.1016/j.compositesb.2016.11.034 .
Parandoush P, Lin D. Compos Struct , 2017 . 182 36 - 53 . DOI:10.1016/j.compstruct.2017.08.088http://doi.org/10.1016/j.compstruct.2017.08.088 .
Chambon P, Curran S, Huff S, Love L, Post B, Wagner R, Jackson R, Green J. Appl Energy , 2017 . 191 99 - 110 . DOI:10.1016/j.apenergy.2017.01.045http://doi.org/10.1016/j.apenergy.2017.01.045 .
Brenken B, Barocio E, Favaloro A, Kunc V, Pipes R B. Addit Manuf , 2018 . 21 1 - 16.
Love L J, Kunc V, Rios O, Duty C E, Elliott A M, Post B K, Smith R J, Blue C A. J Mater Res , 2014 . 29 ( 17 ): 1893 - 1898 . DOI:10.1557/jmr.2014.212http://doi.org/10.1557/jmr.2014.212 .
DeNardo N M. Additive Manufacturing of Carbon Fiber-Reinforced Thermoplastic Composites. Doctoral Dissertation of Purdue University , 2016 .
Chen Ning(陈宁), Xia Hesheng(夏和生), Zhang Jie(张杰), Wang Qi(王琪). Polymer Bulletin(高分子通报) , 2017 . ( 10 ): 41 - 51.
Kalsoom U, Nesterenko P N, Paull B. RSC Adv , 2016 . 6 ( 65 ):60355 - 60371 . DOI:10.1039/C6RA11334Fhttp://doi.org/10.1039/C6RA11334F .
Wu H, Fahy W P, Kim S, Kim H, Zhao N, Pilato L, Kafi A, Bateman S, Koo J H. Prog Mater Sci , 2020 . 111 100638 DOI:10.1016/j.pmatsci.2020.100638http://doi.org/10.1016/j.pmatsci.2020.100638 .
Kwok S W, Goh K H H, Tan Z D, Tan S T M, Tjiu W W, Soh J Y, Ng Z J G, Chan Y Z, Hui H K, Goh K E J. Appl Mater Today , 2017 . 9 167 - 175.
Zhang D, Chi B, Li B, Gao Z, Du Y, Guo J, Wei J. Synthetic Met , 2016 . 217 79 - 86 . DOI:10.1016/j.synthmet.2016.03.014http://doi.org/10.1016/j.synthmet.2016.03.014 .
Maurel A, Courty M, Fleutot B, Tortajada H, Prashantha K, Armand M, Grugeon S, Panier S, Dupont L. Chem Mater , 2018 . 30 ( 21 ): 7484 - 7493 . DOI:10.1021/acs.chemmater.8b02062http://doi.org/10.1021/acs.chemmater.8b02062 .
Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y, Liu Z, Zhang C. J Mater Chem B , 2014 . 2 ( 43 ): 7583 - 7595 . DOI:10.1039/C4TB01063Ahttp://doi.org/10.1039/C4TB01063A .
Gaisford S. 8 - 3D printed pharmaceutical products. In: Kalaskar D M, ed. 3D Printing in Medicine. Duxford: Woodhead Publishing, 2017. 155 − 166
Ilardo R, Williams C B. Rapid Prototyping J , 2010 . 16 ( 3 ): 174 - 179.
Klippstein H, Diaz de Cerio Sanchez A, Hassanin H, Zweiri Y, Seneviratne L. Adv Eng Mater , 2018 . 20 1700552 .
Chacón J M, Caminero M A, García-Plaza E, Núñez P J. Mater Des , 2017 . 124 143 - 157 . DOI:10.1016/j.matdes.2017.03.065http://doi.org/10.1016/j.matdes.2017.03.065 .
Chen Q, Mangadlao J D, Wallat J, De Leon A, Pokorski J K, Advincula R C. ACS Appl Mater Interfaces , 2017 . 9 ( 4 ): 4015 - 4023 . DOI:10.1021/acsami.6b11793http://doi.org/10.1021/acsami.6b11793 .
Spoerk M, Savandaiah C, Arbeiter F, Traxler G, Cardon L, Holzer C, Sapkota J. Compos A , 2018 . 113 95 - 104 . DOI:10.1016/j.compositesa.2018.06.018http://doi.org/10.1016/j.compositesa.2018.06.018 .
Compton B G, Post B K, Duty C E, Love L, Kunc V. Addit Manuf , 2017 . 17 77 - 86.
Carneiro O S, Silva A F, Gomes R. Mater Des , 2015 . 83 768 - 776 . DOI:10.1016/j.matdes.2015.06.053http://doi.org/10.1016/j.matdes.2015.06.053 .
Schirmeister C G, Hees T, Licht E H, Mülhaupt R. Addit Manuf , 2019 . 28 152 - 159.
Postiglione G, Natale G, Griffini G, Levi M, Turri S. Compos A , 2015 . 76 110 - 114 . DOI:10.1016/j.compositesa.2015.05.014http://doi.org/10.1016/j.compositesa.2015.05.014 .
Fallon J J, McKnight S H, Bortner M J. Addit Manuf , 2019 . 30 100810 .
Gao X, Yu N, Li J. Influence of printing parameters and filament quality on structure and properties of polymer composite components used in the fields of automotive. In: Friedrich K, Walter R, Soutis C, Advani SG, Fiedler IHB eds. Structure and Properties of Additive Manufactured Polymer Components. Duxford: Woodhead Publishing, 2020. 303 − 330
Spoerk M, Holzer C, Gonzalez-Gutierrez J. J Appl Polym Sci , 2020 . 137 ( 12 ): 48545 DOI:10.1002/app.48545http://doi.org/10.1002/app.48545 .
Brian N T. Rapid Prototyping J , 2014 . 20 ( 3 ): 192 - 204 . DOI:10.1108/RPJ-01-2013-0012http://doi.org/10.1108/RPJ-01-2013-0012 .
Gibson M A, Mykulowycz N M, Shim J, Fontana R, Schmitt P, Roberts A, Ketkaew J, Shao L, Chen W, Bordeenithikasem P, Myerberg J S, Fulop R, Verminski M D, Sachs E M, Chiang Y M, Schuh C A, Hart A J, Schroers J. Mater Today , 2018 . 21 ( 7 ): 697 - 702 . DOI:10.1016/j.mattod.2018.07.001http://doi.org/10.1016/j.mattod.2018.07.001 .
Venkataraman N, Rangarajan S, Matthewson M J, Harper B, Safari A, Danforth S C, Wu G, Langrana N, Guceri S, Yardimci A. Rapid Prototyping J , 2000 . 6 ( 4 ): 244 - 253 . DOI:10.1108/13552540010373344http://doi.org/10.1108/13552540010373344 .
Gilmer E L, Miller D, Chatham C A, Zawaski C, Fallon J J, Pekkanen A, Long T E, Williams C B, Bortner M J. Polymer , 2018 . 152 51 - 61 . DOI:10.1016/j.polymer.2017.11.068http://doi.org/10.1016/j.polymer.2017.11.068 .
Wu J, Chen N, Wang Q. Polym Advan Technol , 2018 . 29 ( 5 ): 1447 - 1455 . DOI:10.1002/pat.4256http://doi.org/10.1002/pat.4256 .
Hertle S, Drexler M, Drummer D. Macromol Mater Eng , 2016 . 301 ( 12 ): 1482 - 1493 . DOI:10.1002/mame.201600259http://doi.org/10.1002/mame.201600259 .
Torrado Perez A R, Roberson D A, Wicker R B. J Fail Anal Preven , 2014 . 14 ( 3 ): 343 - 353 . DOI:10.1007/s11668-014-9803-9http://doi.org/10.1007/s11668-014-9803-9 .
Spoerk M, Sapkota J, Weingrill G, Fischinger T, Arbeiter F, Holzer C. Macromol Mater Eng , 2017 . 302 ( 10 ): 1700143 DOI:10.1002/mame.201700143http://doi.org/10.1002/mame.201700143 .
Gao X, Qi S, Zhang D, Su Y, Wang D. Addit Manuf , 2020 . 35 101414 .
Khaliq H, Gomes R, Fernandes C, Nobrega J M, Carneiro O, Ferrás L. Rapid Prototyping J , 2017 . 23 ( 4 ): 727 - 735 . DOI:10.1108/RPJ-02-2016-0027http://doi.org/10.1108/RPJ-02-2016-0027 .
Gao X, Zhang D, Qi S, Wen X, Su Y. J Appl Polym Sci , 2019 . 136 47824 DOI:10.1002/app.47824http://doi.org/10.1002/app.47824 .
Christ J F, Aliheidari N, Ameli A, Pötschke P. Mater Des , 2017 . 131 394 - 401 . DOI:10.1016/j.matdes.2017.06.011http://doi.org/10.1016/j.matdes.2017.06.011 .
Nikzad M, Masood S H, Sbarski I. Mater Des , 2011 . 32 ( 6 ): 3448 - 3456 . DOI:10.1016/j.matdes.2011.01.056http://doi.org/10.1016/j.matdes.2011.01.056 .
Schirmeister C G, Hees T, Licht E H, Mülhaupt R. Addit Manuf , 2019 . 28 152 - 159.
Gao X, Zhang D, Qi S, Su Y, Dong X. Rapid Prototyping J , 2019 . 25 ( 7 ): 1145 - 1154 . DOI:10.1108/RPJ-09-2018-0258http://doi.org/10.1108/RPJ-09-2018-0258 .
Spoerk M, Gonzalez-Gutierrez J, Lichal C, Cajner H, Berger G R, Schuschnigg S, Cardon L, Holzer C. Polymers , 2018 . 10 490 DOI:10.3390/polym10050490http://doi.org/10.3390/polym10050490 .
Zhu D, Y R, Liao G, Jiang S, Liu F, Guo J, Xu G. J Appl Polym Sci , 2017 . 134 45332 DOI:10.1002/app.45332http://doi.org/10.1002/app.45332 .
Liao G, Li Z, Cheng Y, Xu D, Zhu D, Jiang S, Guo J, Chen X, Xu G, Zhu Y. Mater Des , 2018 . 139 283 - 292 . DOI:10.1016/j.matdes.2017.11.027http://doi.org/10.1016/j.matdes.2017.11.027 .
Spoerk M, Savandaiah C, Arbeiter F, Sapkota J, Holzer C. Polym Compos , 2017 . 40 ( 2 ): 638 - 651.
Masood S H, Song W Q. Mater Des , 2004 . 25 ( 7 ): 587 - 594 . DOI:10.1016/j.matdes.2004.02.009http://doi.org/10.1016/j.matdes.2004.02.009 .
Zhang J, Feng X, Patil H, Tiwari R V, Repka M A. Int J Pharmaceut , 2017 . 519 ( 1-2 ): 186 - 197 . DOI:10.1016/j.ijpharm.2016.12.049http://doi.org/10.1016/j.ijpharm.2016.12.049 .
Abdullah A M, Tuan Rahim T N A, Mohamad D, Akil H M, Rajion Z A. Mater Lett , 2017 . 189 307 - 309 . DOI:10.1016/j.matlet.2016.11.052http://doi.org/10.1016/j.matlet.2016.11.052 .
Zhong W, Li F, Zhang Z, Song L, Li Z. Mater Sci Eng A , 2001 . 301 ( 2 ): 125 - 130 . DOI:10.1016/S0921-5093(00)01810-4http://doi.org/10.1016/S0921-5093(00)01810-4 .
Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z. Sci Rep , 2015 . 5 ( 1 ): 11181 DOI:10.1038/srep11181http://doi.org/10.1038/srep11181 .
Kaynak B, Spoerk M, Shirole A, Ziegler W, Sapkota J. Macromol Mater Eng , 2018 . 303 1800037 DOI:10.1002/mame.201800037http://doi.org/10.1002/mame.201800037 .
Northcutt L A, Orski S V, Migler K B, Kotula A P. Polymer , 2018 . 154 182 - 187 . DOI:10.1016/j.polymer.2018.09.018http://doi.org/10.1016/j.polymer.2018.09.018 .
Liu P, Dinwiddie R B, Keum J K, Vasudevan R K, Jesse S, Nguyen N A, Lindahl J M, Kunc V. Compos Sci Technol , 2018 . 168 263 - 271 . DOI:10.1016/j.compscitech.2018.09.010http://doi.org/10.1016/j.compscitech.2018.09.010 .
Shmueli Y, Lin Y-C, Lee S, Zhernenkov M, Tannenbaum R, Marom G, Rafailovich M H. ACS Appl Mater Interfaces , 2019 . 11 ( 40 ): 37112 - 37120 . DOI:10.1021/acsami.9b12908http://doi.org/10.1021/acsami.9b12908 .
Nogales A, Gutiérrez-Fernández E, García-Gutiérrez M-C, Ezquerra T A, Rebollar E, Šics I, Malfois M, Gaidukovs S, Ge̅cis E, Celms K, Bakradze G. Macromolecules , 2019 . 52 ( 24 ): 9715 - 9723 . DOI:10.1021/acs.macromol.9b01620http://doi.org/10.1021/acs.macromol.9b01620 .
Liu F, Vyas C, Poologasundarampillai G, Pape I, Hinduja S, Mirihanage W, Bartolo P. Macromol Mater Eng , 2018 . 303 ( 2 ): 1700494 DOI:10.1002/mame.201700494http://doi.org/10.1002/mame.201700494 .
Gantenbein S, Masania K, Woigk W, Sesseg J P W, Tervoort T A, Studart A R. Nature , 2018 . 561 ( 7722 ): 226 - 230 . DOI:10.1038/s41586-018-0474-7http://doi.org/10.1038/s41586-018-0474-7 .
Jiang Y, Wu J, Leng J, Cardon L, Zhang J. Polymer , 2019 . 186 121971 .
Wang J, Zhang Y, Sun W, Chu S, Chen T, Sun A, Guo J, Xu G. Macromol Mater Eng , 2019 . 304 ( 7 ): 1900107 DOI:10.1002/mame.201900107http://doi.org/10.1002/mame.201900107 .
Shmueli Y, Lin Y C, Zuo X, Guo Y, Lee S, Freychet G, Zhernenkov M, Kim T, Tannenbaum R, Marom G, Gersappe D, Rafailovich M H. Compos Sci Technol , 2020 . 196 108227 DOI:10.1016/j.compscitech.2020.108227http://doi.org/10.1016/j.compscitech.2020.108227 .
Wang L, Gardner D J. Polymer , 2017 . 113 74 - 80 . DOI:10.1016/j.polymer.2017.02.055http://doi.org/10.1016/j.polymer.2017.02.055 .
Wang L, Gramlich W M, Gardner D J. Polymer , 2017 . 114 242 - 248 . DOI:10.1016/j.polymer.2017.03.011http://doi.org/10.1016/j.polymer.2017.03.011 .
Vaes D, Coppens M, Goderis B, Zoetelief W, van Puyvelde P. Appl Sci , 2019 . 9 ( 13 ): 2676 DOI:10.3390/app9132676http://doi.org/10.3390/app9132676 .
Benwood C, Anstey A, Andrzejewski J, Misra M, Mohanty A K. ACS Omega , 2018 . 3 ( 4 ): 4400 - 4411 . DOI:10.1021/acsomega.8b00129http://doi.org/10.1021/acsomega.8b00129 .
Weng Z, Wang J, Senthil T, Wu L. Mater Des , 2016 . 102 276 - 283 . DOI:10.1016/j.matdes.2016.04.045http://doi.org/10.1016/j.matdes.2016.04.045 .
Dawoud M, Taha I, Ebeid S J. J Manuf Process , 2016 . 21 39 - 45 . DOI:10.1016/j.jmapro.2015.11.002http://doi.org/10.1016/j.jmapro.2015.11.002 .
Sun Q, Rizvi G M, Bellehumeur C T, Gu P. Rapid Prototyping J , 2008 . 14 ( 2 ): 72 - 80 . DOI:10.1108/13552540810862028http://doi.org/10.1108/13552540810862028 .
Abbott A C, Tandon G P, Bradford R L, Koerner H, Baur J W. Addit Manuf , 2018 . 19 29 - 38.
Bellehumeur C, Li L, Sun Q, Gu P. J Manuf Process , 2004 . 6 ( 2 ): 170 - 178 . DOI:10.1016/S1526-6125(04)70071-7http://doi.org/10.1016/S1526-6125(04)70071-7 .
Bellehumeur C, Bisaria M K, Vlachopoulos J. Polym Eng Sci , 1996 . 36 ( 17 ): 2198 - 2207 . DOI:10.1002/pen.10617http://doi.org/10.1002/pen.10617 .
Yin J, Lu C, Fu J, Huang Y, Zheng Y. Mater Des , 2018 . 150 104 - 112 . DOI:10.1016/j.matdes.2018.04.029http://doi.org/10.1016/j.matdes.2018.04.029 .
Yang F, Pitchumani R. Macromolecules , 2002 . 35 ( 8 ): 3213 - 3224 . DOI:10.1021/ma010858ohttp://doi.org/10.1021/ma010858o .
Seppala J E, Hoon Han S, Hillgartner K E, Davis C S, Migler K B. Soft Matter , 2017 . 13 ( 38 ): 6761 - 6769 . DOI:10.1039/C7SM00950Jhttp://doi.org/10.1039/C7SM00950J .
Shmueli Y, Jiang J, Zhou Y, Xue Y, Chang C-C, Yuan G, Satija S K, Lee S, Nam C Y, Kim T, Marom G, Gersappe D, Rafailovich M H. ACS Appl Polym Mater , 2019 . 1 ( 6 ): 1559 - 1567 . DOI:10.1021/acsapm.9b00328http://doi.org/10.1021/acsapm.9b00328 .
McIlroy C, Olmsted P D. J Rheol , 2017 . 61 ( 2 ): 379 - 397 . DOI:10.1122/1.4976839http://doi.org/10.1122/1.4976839 .
McIlroy C, Olmsted P D. Polymer , 2017 . 123 376 - 391 . DOI:10.1016/j.polymer.2017.06.051http://doi.org/10.1016/j.polymer.2017.06.051 .
Srinivas V, van Hooy-Corstjens C S J, Harings J A W. Polymer , 2018 . 142 348 - 355 . DOI:10.1016/j.polymer.2018.03.063http://doi.org/10.1016/j.polymer.2018.03.063 .
McIlroy C, Graham R S. Addit Manuf , 2018 . 24 323 - 340.
Ahn S H, Montero M, Odell D, Roundy S, Wright P K. Rapid Prototyping J , 2002 . 8 ( 4 ): 248 - 257 . DOI:10.1108/13552540210441166http://doi.org/10.1108/13552540210441166 .
Lay M, Thajudin N L N, Hamid Z A A, Rusli A, Abdullah M K, Shuib R K. Compos B , 2019 . 176 107341 DOI:10.1016/j.compositesb.2019.107341http://doi.org/10.1016/j.compositesb.2019.107341 .
Kotlinski J. Rapid Prototyping J , 2014 . 20 ( 6 ): 499 - 510 . DOI:10.1108/RPJ-06-2012-0052http://doi.org/10.1108/RPJ-06-2012-0052 .
Torrado A R, Shemelya C M, English J D, Lin Y, Wicker R B, Roberson D A. Addit Manuf , 2015 . 6 16 - 29.
Gao X, Zhang D, Wen X, Qi S, Su Y, Dong X. Rapid Prototyping J , 2019 . 25 ( 7 ): 1145 - 1154 . DOI:10.1108/RPJ-09-2018-0258http://doi.org/10.1108/RPJ-09-2018-0258 .
Zhu Yanbo(朱彦博), Du Miao(杜淼), Lu Chaohua(陆超华), Yin Jun(尹俊), Zheng Qiang(郑强). Acta Polymerica Sinica(高分子学报) , 2018 . ( 4 ): 532 - 540 . DOI:10.11777/j.issn1000-3304.2017.17146http://doi.org/10.11777/j.issn1000-3304.2017.17146 .
Sweeney C B, Lackey B A, Pospisil M J, Achee T C, Hicks V K, Moran A G, Teipel B R, Saed M A, Green M J. Sci Adv , 2017 . 3 ( 6 ): e1700262 DOI:10.1126/sciadv.1700262http://doi.org/10.1126/sciadv.1700262 .
Bhandari S, Lopez-Anido R A, Gardner D J. Addit Manuf , 2019 . 30 100922 .
Davidson J R, Appuhamillage G A, Thompson C M, Voit W, Smaldone R A. ACS Appl Mater Interfaces , 2016 . 8 ( 26 ): 16961 - 16966 . DOI:10.1021/acsami.6b05118http://doi.org/10.1021/acsami.6b05118 .
Levenhagen N P, Dadmun M D. Polymer , 2017 . 122 232 - 241 . DOI:10.1016/j.polymer.2017.06.057http://doi.org/10.1016/j.polymer.2017.06.057 .
Levenhagen N P, Dadmun M D. Polymer , 2018 . 152 35 - 41 . DOI:10.1016/j.polymer.2018.01.031http://doi.org/10.1016/j.polymer.2018.01.031 .
0
浏览量
59
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构