浏览全部资源
扫码关注微信
四川大学化学学院 成都 610064
E-mail: chensichong@scu.edu.cn Si-chong Chen, E-mail: chensichong@scu.edu.cn
纸质出版日期:2021-2-3,
网络出版日期:2020-9-8,
收稿日期:2020-6-23,
修回日期:2020-7-29,
扫 描 看 全 文
伍聪, 杨丹丹, 吴刚, 陈思翀. 苯基次磷酸盐离聚物/聚磷酸铵协效阻燃增韧改性聚乳酸[J]. 高分子学报, 2021,52(2):176-185.
Cong Wu, Dan-dan Yang, Gang Wu, Si-chong Chen. Flame Retardant and Toughening Modification of Poly(lactic acid) with Phenylhypophosphate Ionomer/Ammonium Polyphosphate[J]. Acta Polymerica Sinica, 2021,52(2):176-185.
伍聪, 杨丹丹, 吴刚, 陈思翀. 苯基次磷酸盐离聚物/聚磷酸铵协效阻燃增韧改性聚乳酸[J]. 高分子学报, 2021,52(2):176-185. DOI: 10.11777/j.issn1000-3304.2020.20161.
Cong Wu, Dan-dan Yang, Gang Wu, Si-chong Chen. Flame Retardant and Toughening Modification of Poly(lactic acid) with Phenylhypophosphate Ionomer/Ammonium Polyphosphate[J]. Acta Polymerica Sinica, 2021,52(2):176-185. DOI: 10.11777/j.issn1000-3304.2020.20161.
通过将双端羟基的聚己内酯(PCL)、聚乳酸(PLA)预聚物以及苯基次磷酸离子盐扩链得到一种含苯基次磷酸盐的离子共聚物,将其与聚磷酸铵(APP)复合用于协同改性聚乳酸,离聚物中苯基次磷酸盐结构与APP具有优异的协同阻燃PLA的作用,同时该离聚物中PLA与苯基次磷酸盐结构有效提升了APP在PLA中的分散能力,最后该离聚物中PCL柔性链段有效改善了PLA的韧性,最终得到更高效阻燃性能且韧性也较好改善的PLA/PCLA-PIU/APP复合材料. 一方面,离聚物中苯基次磷酸盐结构与APP协同有效促进了PLA的成炭,形成更连续致密的炭层从而阻隔可燃气体的释放,达到更好的阻燃效果. 锥形量热、残炭的扫描电子显微镜(SEM)、能谱分析(EDS)、拉曼光谱等测试证实了这一结果,与纯PLA以及仅使用APP的PLA/APP相比,PLA/PCLA-PIU/APP的热释放速率与总热释放均降低,同时残炭的石墨化程度更高,形成了更为致密的炭层. 另一方面,力学性能测试结果表明,离聚物中PCL柔性链段的存在使得与APP复合改性后的PLA的韧性相比纯PLA和PLA/APP有较大的提升;SEM测试表明,离聚物中PLA与苯基次磷酸盐结构起到增容作用,提升了APP在PLA中的分散性.
Poly(lactic acid) (PLA)
as a kind of aliphatic polyester derived from biomass with excellent mechanical strength
biocompatibility and biodegradability
is a kind of green polymers with promising potential application. However
the application of PLA as a commodity polyester has been restricted dramatically because of its brittleness and flammability nature. It is still a great challenge to improve flame retardancy and toughness of PLA simultaneously by a simple blending method. In this work
copolymer ionomer (PCLA-PIU) was prepared by chain extension copolymerization of hydroxyl terminated poly(
ε
-caprolactone) (PCL)
PLA prepolymer and phenylhypophosphate
and then incorporated with ammonium polyphosphate (APP) for synergistic modification of PLA. The ionomer can act as a compatibilizer to enhance the dispersion of APP in PLA matrix because of its PLA segments and phenylhypophosphate groups. The SEM observation shows that the APP particles dispersed in PLA/PCLA-PIU/APP composite has significantly smaller size and uniform dispersity
compared to the PLA/APP
20
. The phenyl hypophosphate groups in the ionomer also has an excellent synergistic effect with APP for improving the flame-retardance of PLA. The flame-retardant properties and mechanism of the PLA and its composites were investigated by LOI
UL-94
Cone calorimeter test
SEM
EDS
Raman spectroscopy
etc
. Compared with neat PLA and PLA/APP
the composite PLA/PCLA-PIU
10
/APP
10
containing 10 wt% of PCLA-PIU and 10 wt% of APP
10
achieves the V-0 rating in UL-94 burning test with limiting oxygen index (LOI) as high as 27.6%. The heat release rate and total heat release of PLA/PCLA-PIU
10
/APP
10
are also reduced significantly to 254.9 kW/m
2
and 55.8 MJ/m
2
respectively. SEM and Raman analysis for char residues after Cone calorimeter test suggest PCLA-PIU and APP had synergistic effect on promoting charring of PLA
which result in compact char residue with high graphitization degree
therefore effectively improving the flame-retardant efficiency. Moreover
the toughness of PLA is improved effectively by the flexible PCL segments of ionomers
resulting in a PLA/PCLA-PIU/APP composite with improved flame retardancy and toughness simultaneously. The mechanical properties test results show that the toughness of the modified PLA (10.3 kJ/m
2
of PLA/PCLA-PIU
10
/APP
10
) is significantly improved compared to those of neat PLA (3.7 kJ/m
2
) and PLA/APP
20
(2.5 kJ/m
2
).
聚乳酸阻燃增韧聚磷酸铵离聚物
Poly(lactic acid)Flame retardantTougheningAmmonium polyphosphateIonomer
Chen Xuesi(陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobin(吕小兵), Zhang Liqun(张立群), Zhu Jin(朱锦), Zhang Jun(张军), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 10 ): 1068 - 1082 . DOI:10.11777/j.issn1000-3304.2019.19124http://doi.org/10.11777/j.issn1000-3304.2019.19124 .
Rasal R M, Janorkar A V, Hirt D E. Prog Polym Sci , 2010 . 35 338 - 356 . DOI:10.1016/j.progpolymsci.2009.12.003http://doi.org/10.1016/j.progpolymsci.2009.12.003 .
Gupta B, Revagade N, Hilborn J. Prog Polym Sci , 2007 . 32 455 - 482 . DOI:10.1016/j.progpolymsci.2007.01.005http://doi.org/10.1016/j.progpolymsci.2007.01.005 .
Lim L T, Auras R, Rubino M. Prog Polym Sci , 2008 . 33 820 - 852 . DOI:10.1016/j.progpolymsci.2008.05.004http://doi.org/10.1016/j.progpolymsci.2008.05.004 .
Zhang Tong(张通), Long Lijuan(龙丽娟), He Wentao(何文涛), He Min(何敏), Qin Shuhao(秦舒浩), Yu Jie(于杰). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 1 ): 71 - 81 . DOI:10.11777/j.issn1000-3304.2018.18148http://doi.org/10.11777/j.issn1000-3304.2018.18148 .
Jia Lin(贾琳), Zhang Wenchao(张文超), Tong Bin(佟斌), Yang Rongjie(杨荣杰), Li Dinghua(李定华). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 7 ): 740 - 751.
Jin X D, Cui S P, Sun S B, Gu X Y, LiH F, Liu X D, Tang W F, Sun J, Serge B, Zhang S. Compos Part A , 2019 . 124 105485 DOI:10.1016/j.compositesa.2019.105485http://doi.org/10.1016/j.compositesa.2019.105485 .
Zhan J, Song L, Nie S, Hu Y. Polym Degrad Stabil , 2009 . 94 291 - 296 . DOI:10.1016/j.polymdegradstab.2008.12.015http://doi.org/10.1016/j.polymdegradstab.2008.12.015 .
Chen C, Gu X, Jin X, Sun J, Zhang S. Carbohydr Polym , 2017 . 157 1586 - 1593 . DOI:10.1016/j.carbpol.2016.11.035http://doi.org/10.1016/j.carbpol.2016.11.035 .
Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R. Polym Adv Technol , 2008 . 19 628 - 635 . DOI:10.1002/pat.1130http://doi.org/10.1002/pat.1130 .
Feng J X, Su S P, Zhu J. Polym Adv Technol , 2011 . 22 1115 - 1122 . DOI:10.1002/pat.1954http://doi.org/10.1002/pat.1954 .
Song Y P, Wang D Y, Wang X L, Lin L, Wang Y Z. Polym Adv Technol , 2011 . 22 2295 - 2301 . DOI:10.1002/pat.1760http://doi.org/10.1002/pat.1760 .
Li D F, Zhao X, Jia Y W, He L, Wang X L, Wang Y Z. Compos Part B , 2019 . 175 107069 DOI:10.1016/j.compositesb.2019.107069http://doi.org/10.1016/j.compositesb.2019.107069 .
Wu Fang, Huang C L, Zeng J B, Li S L, Wang Y Z. Polymer , 2014 . 55 4358 - 4368 . DOI:10.1016/j.polymer.2014.05.059http://doi.org/10.1016/j.polymer.2014.05.059 .
Bourbigot S, Bras M L, Duquesne S, Rochery M. Macromol Mater Eng , 2004 . 289 499 - 511 . DOI:10.1002/mame.200400007http://doi.org/10.1002/mame.200400007 .
Wang Q, Xiong L, Liang H, Liang C, Huang S. Polym Compos , 2018 . 39 807 - 814 . DOI:10.1002/pc.24002http://doi.org/10.1002/pc.24002 .
Ran GW, Liu X D, Guo J, Sun J, Li H F, Gu X Y, Zhang S. Compos Part B , 2019 . 173 106772 DOI:10.1016/j.compositesb.2019.04.033http://doi.org/10.1016/j.compositesb.2019.04.033 .
Sun Y, Masa J, Liu Z M, Schunhmann W, Muhler M. Chem Eur J , 2012 . 18 6972 - 6978 . DOI:10.1002/chem.201103253http://doi.org/10.1002/chem.201103253 .
Daniel R, Dreyer S P, Bielawski C W, Ruoff R S. Chem Soc Rev , 2010 . 39 228 - 240 . DOI:10.1039/B917103Ghttp://doi.org/10.1039/B917103G .
Rebelo S L, Guedes A, Szefczyk M E, Pereira A M, Araujo J P, Freire C. Phys Chem Chem Phys , 2016 . 18 12784 - 12796 . DOI:10.1039/C5CP06519Dhttp://doi.org/10.1039/C5CP06519D .
Wu S. Polym Int , 1992 . 29 229 - 247 . DOI:10.1002/pi.4990290313http://doi.org/10.1002/pi.4990290313 .
Panda B P, Mohanty S, Nayak S K. Polym-Plast Technol , 2015 . 54 462 - 473 . DOI:10.1080/03602559.2014.958777http://doi.org/10.1080/03602559.2014.958777 .
Fond C. J Polym Sci B: Polym Phys , 2001 . 39 ( 17 ): 2081 - 2096 . DOI:10.1002/polb.1183http://doi.org/10.1002/polb.1183 .
Kim G M, Michler G H. Polymer , 1998 . 39 ( 23 ): 5689 - 5697 . DOI:10.1016/S0032-3861(98)00089-5http://doi.org/10.1016/S0032-3861(98)00089-5 .
Kim G M, Michler G H. Polymer , 1998 . 39 ( 23 ): 5699 - 5703 . DOI:10.1016/S0032-3861(98)00169-4http://doi.org/10.1016/S0032-3861(98)00169-4 .
Zeng J B, Li K A, Du A K. RSC Adv , 2015 . 5 32546 - 32565 . DOI:10.1039/C5RA01655Jhttp://doi.org/10.1039/C5RA01655J .
0
浏览量
51
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构