纸质出版日期:2021-1-3,
网络出版日期:2020-9-28,
收稿日期:2020-7-20,
修回日期:2020-8-19
扫 描 看 全 文
引用本文
阅读全文PDF
随着环境污染、资源枯竭和医疗健康等问题的加剧,研发同时满足特定使用性能、安全性及可再生性的新型材料成为当前的发展趋势. 而丝素蛋白材料正是以天然蚕丝为基本原材料,经一定的加工和功能化而形成的具有特殊结构、独特性能和广泛应用的生物质材料,近年来在生物医药、生物电子、智能传感等领域展现出巨大的应用潜力. 本专论总结了丝素蛋白纤维及功能化材料的最新成果,结合本课题组相关工作,重点阐述了再生丝素蛋白纤维的仿生制备、生物医用支架的构筑与功能化、智能电子材料的设计以及天然多功能蚕丝及其构筑基元制备的研究进展,以期为高性能丝素蛋白材料的设计与构筑提供指导和借鉴.
With the advent of environmental pollution, resource depletion, and medical and health problems, the fabrication of new materials that meet specific performance standards, green safety and reproducibility has become the focus of current research. Silk fibroin, originating from natural silkworm cocoons, is among the most important renewable material due to its excellent biocompatibility, biodegradability, optical properties, thermal stability, and mechanical strength. Furthermore, silk fibroin can be processed, functionalized and produced in a variety of forms, such as porous scaffolds, hydrogels, membranes, and fibers, which endows silk fibroin-based materials (SFBM) with special structure, unique performance and increases their potential fields of application into biomedicine, bioelectronics, and intelligent sensing. However, there are still many challenges to fabricate SFBM with excellent performance on a large scale. Firstly, conventional methods of processing destroy the multilevel structure of silk firoin, which restricts its biomimetic design and results in degradation of its performance. Secondly, it is difficult to precisely regulate the structure of silk fibroin and ensure consistent performance across different batches. Thirdly, the performance of SFBM is comparatively inferior to that of synthetic polymers and can easily deteriorate when exposed to light, heat, or radiation. Therefore, the development of simple, efficient, biomimetic processing strategies to regulate the structure, improve the performance, and clarify the structure-function relationships of SFBM is of considerable significance. The present review summaries the latest achievements and developments of silk fibroin-based fibers and functional materials, focusing on the progress of research into biomimetic preparation of regenerated silk fibroin, the construction and functionalization of biomedical scaffolds, the design of intelligent electronic materials, and the fabrication of natural multi-functional silk and its building blocks. The aim of this review is to provide guidance and a reference for the design and construction of high-performance SFBM.
This review focuses on the fabrication of silk-based functional materials with different dimensionalities and their building blocks, and summaries the latest application researches in biomedicine, bioelectronics, intelligent sensing.
天然高分子材料是一类来源于自然界,在动物、植物以及微生物中广泛存在的大分子有机物质,主要包括多糖、蛋白质、木质素、天然橡胶、天然聚酯等. 其中,动物蛋白,尤其是蚕丝及其织物,因兼具透气性良好、光泽度高、力学性能优异等特点,早在几千年前就被应用于纺织、服装领域[
Fig 1 (a) The percentage of published papers about silk fibroin in different years since 1916; (b) The main research fields of silk fibroin since 2006.
目前丝素蛋白基材料的构筑研究主要集中于高性能丝素蛋白纤维的仿生制备、功能性丝素蛋白材料的构建及应用(
本文主要介绍了源于桑蚕丝的丝素蛋白纤维及其功能材料的最新进展,结合本课题组研究工作,从丝素蛋白纤维的仿生制备及力学增强、丝素蛋白生物支架材料的构筑及功能化、丝素蛋白智能电子材料的设计及构筑、丝素蛋白功能基元的原位设计及其功能材料构筑等四个方面进行重点综述,最后提出了丝素蛋白材料的未来发展趋势.
蚕的生物纺丝器结构精密,成丝机理精巧,在常温常压下即可获得性能优异的蚕丝,对其进行仿生纺丝是制备高性能人造动物丝的有效策略之一,同时还有望加深对蚕天然纺丝过程的理解,为其他高性能纤维的制备提供依据与指导. 目前的仿生纺丝方法主要有湿法纺丝、干法纺丝及微流控纺丝等(
Fig 2 The biomimetic spinning of RSF fibers.
再生丝素蛋白(RSF)的湿法纺丝原理是将纺丝原液注入凝固浴,利用原液中水和凝固浴中溶剂的双扩散,使丝素蛋白发生聚集并从原液中析出,进而固化形成初生纤维[
2008年,Zhu等将湿法纺丝技术与拉伸处理结合,首次制备了与天然蚕丝力学性能相近的RSF纤维[
但与天然蚕丝在空气中成型不同,湿法纺丝技术必须借助凝固浴,其存在溶剂回收困难、环境污染、仿生程度低等问题.
与湿法纺丝相比,干法纺丝更接近于天然纺丝过程,但与家蚕天然纺丝过程中通过液晶态的丝素蛋白构象转变将水分“挤出”的过程[
后续,本课题组系统研究了RSF纺丝液的浓度、pH值、后处理条件等对纤维结构与性能的影响[
Fig 3 Proposed model of the nanoconfined crystallite toughening mechanism of hybrid artificial silks: (a) RSF fibers with TiO2 (Reprinted with permission from Ref.[
虽然干法纺丝可在一定程度上实现对蚕天然纺丝过程的模拟,但与蚕腺体的多功能集成相比仍相距甚远[
Fig 4 The microfluidic chip based wet-spinning platform (a) (Reprinted with permission from Ref.[
RSF纤维的仿生制备主要集中于纺丝条件、纺丝方法、RSF结构与纤维性能的关系规律的研究,这些研究为制备其他高性能蛋白质材料奠定了基础. 后续将进一步开展超强韧RSF的连续纺丝及规模化制备.
与合成高分子相比,丝素蛋白的最大优势在于其优异的生物相容性和生物可降解性,因此用其构建的生物医用支架材料具有巨大的应用前景[
丝素蛋白膜材料的构筑可采用抽滤、涂覆及静电纺丝技术. 其中,抽滤技术因简单、易操作,已广泛用于制备纯RSF膜及RSF复合膜[
Fig 5 RSF-based two dimensional scaffolds. (a) RSF film containing CaCl2 fabricated by casting on polystyrene Petri dishes (Reprinted with permission from Ref.[
为进一步提升RSF膜材料的综合性能,并赋予其原本不具有的新性能,可通过复合GO、PEDOT:PSS等物质实现. Wang等以RSF溶液及GO悬浮液为原料,采用逐层涂覆与水蒸气后处理结合的方法,制备了具有取向排列结构的复合膜,与传统的纯RSF膜相比,力学强度和韧性分别提升41%和45%[
作为组织工程用支架材料,除满足必需的力学性能外,还应具有一定的生理活性以满足细胞生长和组织再生所需. 为此,本课题组将负载有血管内皮生长因子(VEGF)的RSF水溶液作为纺丝液,具有生理活性的膀胱脱细胞基质(BAMG)作为接收基底,同时提升支架的力学性能及生理活性[
上述RSF膜材料已被证明可有效促进尿道、海绵体、膀胱、肝脏等受损组织的修复与再生[
特定组织尤其是大尺寸组织的修复,通常需具有三维结构的组织工程支架,目前常用的构筑方法有冷冻干燥法及3D打印技术. 其中冷冻干燥法因简便易行,所得支架压缩强度高,通常用于构筑骨组织修复材料. 例如,Li等[
Fig 6 RSF scaffolds with different pore structures obtained by different methods. (a) SEM image of RSF scaffold containing micro-/nano-fibers prepared by a facile two-step freeze-drying technology (Reprinted with permission from Ref.[
上述冷冻干燥支架均可满足骨组织修复的需求,但为实现对特定人群特定骨组织的个性化修复,可将3D打印技术与之结合. 但需要注意的是,纯RSF水溶液黏度小,难以形成凝胶,通常需与其他材料复合才可顺利打印. 研究者通常采用无机填料作为凝胶诱导剂及复合增强相,以制备具有特定宏观形貌及分级多孔结构的超硬支架[
为充分发挥3D打印技术的优势,扩展RSF在软骨、软组织及器官中的应用,研究者采用其他物理及化学交联方法诱导RSF形成凝胶,构建弹性支架材料. 其中,物理交联法是通过复合其他物质诱导RSF形成β-折叠构象,并借助各组分间的氢键及疏水相互作用,形成稳定的网络结构[
除上述构筑方法外,将传统的纺丝技术、编织技术与凝胶技术结合,可构建各向异性的支架材料,如仿生骨骼肌、心脏等器官的组织结构. Wu等[
智能电子的迅猛发展所带来的电子垃圾及污染问题日趋严重,开发可降解、可持续的电子材料成为新的发展趋势. RSF作为生物质材料的典型代表,近10年间,主要以2种方式参与智能电子材料的设计及构筑(
Fig 7 Brief timeline of the development of silk-based advanced materials for soft electronics (Reprinted with permission from Ref.[
RSF因力学性能与降解速率可调以及良好的可加工性,成为理想的基底及封装材料. Yadavalli等[
目前RSF作为功能层已用于构筑传感器、摩擦纳米发电机、忆阻器等器件. 例如,利用RSF优异的吸湿性及皮肤亲和力,可制备湿度传感器,实时监测人体呼吸. 其原理是采用传统的叉指电极纹路,凭借RSF捕捉人体呼出的水分子与作为感应层的氧化石墨烯表面的官能团作用,引起电阻抗降低,从而检测电容变化来识别呼吸速率和强度[
RSF的重链富含甘氨酸(Gly)、丙氨酸(Ala)和丝氨酸(Ser),且经静电纺丝法制备的RSF纤维具有超高的比表面积及较高的表面粗糙度,因而在与聚酯(PET)、聚酰亚胺(PI)等材料摩擦接触的过程中,易失去表面电子而导致正电荷在表面聚集,可作为摩擦纳米发电机的摩擦起电层[
随着神经科学和脑科学的发展,利用RSF构建生物基忆阻器成为目前的研究热点[
Fig 8 Intelligent electronics based on RSF and silk. (a) Resistive switching device with ITO/RSF/Au configuration (Reprinted with permission from Ref.[
上述研究为进一步构建高性能RSF智能电子材料提供了设计思路,但相关机理(如RSF的忆阻机制、摩擦纳米发电机制等)仍有待深入研究,同时,器件的灵敏度及稳定性仍需进一步提高.
上述研究是基于破坏蚕丝天然的高级结构获得分子级丝素蛋白,进而对其进行分子功能化及多级结构重构. 但目前所得的仿生结构尚无法完全与天然蚕丝相媲美. 而丝素纳米纤维(SNF)作为由丝素蛋白分子构成的介观结构单元,保有蚕丝特有的微观结构,是天然蚕丝宏观性能的关键结构内因之一,因而直接以其作为功能基元,结合特定的材料序构策略,有望获得性能卓著的新型功能材料.
充分研究SNF的分子结构、自组装行为及应用的前提是对其进行高效制备,目前主要有自上而下法和自下而上法. 其中,自下而上法是采用丝素蛋白溶液为前驱体,通过自发或外界诱导作用形成纳米纤维. 2009年复旦大学邵正中等[
Fig 9 (a) AFM height images at 10 min, 15 min, 23 min showing the formation steps of fibrillar network of RSF 0.75% incubated in 50% ethanol-water (Reprinted with permission from Ref.[
凌盛杰等[
自上而下法则是通过物理或化学方法直接从天然蚕丝中提取SNF,例如Zhao等[
上述2种方法为制备SNF奠定了基础,但自下而上法制备的SNF的多级结构仍不及蚕丝的天然结构,自上而下法所得产物为丝素蛋白分子、纳米级和微米级纤维的混合体. 针对此问题,本课题组将NaOH/尿素解离纤维素分子间氢键作用力的方法应用于蚕丝的剥离[
Fig 10 Schematic diagram and experimental results showing the preparation; hierarchical structure and morphology of silk nanoribbons (SNRs): (a) Schematics showing the preparation of SNRs by partially dissolving silk using the NaOH/urea system at −12 °C; (b) Proposed hierarchical structure of silk; (c) AFM image of SNRs. The width of SNRs is about 25 nm, and the height of SNRs is about 0.4 nm (Reprinted with permission from Ref.[
后续仍需开发高效制备SNF的新方法,并拓展对SNF的功能化研究,以推进其在不同领域的应用.
为进一步突破天然蚕丝功能性不足、蚕丝改性耗能污染等技术瓶颈,同时扩展蚕丝构筑基元SNF的功能性,可对天然蚕丝进行功能改性. 目前主要有后处理法、基因工程法、添食育蚕法,其中后处理法是采用有机染料或无机纳米粒子对蚕丝进行染色,存在光稳定性差、环境污染等问题;基因工程法是将特定蛋白的基因导入到家蚕体内,对丝素蛋白进行重组,但该方法价格昂贵,难以实现规模化生产[
Fig 11 (a) Reinforced and ultraviolet resistant silk (Reprinted with permission from Ref.[
自20世纪60年代开始对丝素蛋白进行系统研究以来,研究者已逐步阐明了天然蚕丝的成丝机理,修正了蚕丝的多级结构模型,并通过多种仿生纺丝方法制备了超越天然蚕丝性能的人造动物丝,现已逐步扩展至生物医用支架、智能电子材料及天然功能蚕丝的设计与构筑. 但真正实现丝素蛋白材料的规模化应用仍存在一定挑战:(1)对丝素蛋白的结构和性能进行精确调控是保证器件批量制备及稳定使用的关键,但目前仍缺乏可靠的调控手段及加工技术;(2)丝素蛋白易被光、热、辐照等条件破坏,致使其无法使用常规的样品处理及表征技术进行精细的微观结构表征,制约了相关机理及机制的研究,因而无法在理论指导下高效开发功能材料;(3)与合成高分子相比,RSF基功能材料的功能性及稳定性仍有较大差距. 但丝素蛋白作为一种生物质材料,已成为今后智能及电子领域的重点研究方向之一. 以材料学科为基础,紧密与物理、化学、生物、信息、电子等多学科结合,借助理论模拟与先进表征技术,高效构筑高性能化、多功能化、智能化的丝素蛋白材料是未来的发展趋势.
Keten S, Xu Z, Ihle B, Buehler M J. Nat Mater , 2010 . 9 ( 4 ): 359 - 367 . DOI:10.1038/nmat2704 . [百度学术]
Shao Z, Vollrath F. Nature , 2002 . 418 ( 6899 ): 741 DOI:10.1038/418741a . [百度学术]
Miller L D, Putthanarat S, Eby R K, Adams W W. Int J Biol Macromol , 1999 . 24 ( 2–3 ): 159 - 165 . DOI:10.1016/S0141-8130(99)00024-0 . [百度学术]
Atkins E. Nature , 2003 . 424 ( 6952 ): 1010 DOI:10.1038/4241010a . [百度学术]
Watt S W, McEwen I J, Viney C. Macromolecules , 1999 . 32 ( 25 ): 8671 - 8673 . DOI:10.1021/ma991223g . [百度学术]
Huo Bo(霍波), Zhai Yong(翟勇), Cui Fuzhai(崔福斋). Acta Polymerica Sinica(高分子学报) , 2002 . ( 3 ): 261 - 264 . DOI:10.3321/j.issn:1000-3304.2002.03.001 . [百度学术]
Zhu B, Wang H, Leow W R, Cai Y, Loh X J, Han M Y, Chen X. Adv Mater , 2016 . 28 ( 22 ): 4250 - 4265 . DOI:10.1002/adma.201504276 . [百度学术]
Huang W, Ling S, Li C, Omenetto F G, Kaplan D L. Chem Soc Rev , 2018 . 47 ( 17 ): 6486 - 6504 . DOI:10.1039/C8CS00187A . [百度学术]
Wei W, Zhang Y P, Zhao Y M, Luo J, Shao H L, Hu X C. Mat Sci Eng C-Mater , 2011 . 31 ( 7 ): 1602 - 1608 . DOI:10.1016/j.msec.2011.07.013 . [百度学术]
Luo J, Zhang L, Peng Q, Sun M, Zhang Y, Shao H, Hu X. Int J Biol Macromol , 2014 . 66 319 - 324 . DOI:10.1016/j.ijbiomac.2014.02.049 . [百度学术]
Kim H J, Kim J H, Jun K W, Kim J H, Seung W C, Kwon O H, Park J Y, Kim S W, Oh I K. Adv Energy Mater , 2016 . 6 ( 8 ): 1502329 DOI:10.1002/aenm.201502329 . [百度学术]
Yang Mei(杨梅), Yang Yingming(杨明英). Bulletin of Sericulture(蚕桑通报) , 2016 . 47 ( 4 ): 18 - 20 . DOI:10.3969/j.issn.0258-4069.2016.04.004 . [百度学术]
Shao Zhengzhong(邵正中). Silk, Spider Silk and Silk Protein(蚕丝、蜘蛛丝及其丝蛋白). Beijing(北京): Chemical Industry Press(化学工业出版社), 2015. 194−199
[百度学术]Chen X, Shao Z, Marinkovic N S, Miller L M, Zhou P, Chance M R. Biophys Chem , 2001 . 89 ( 1 ): 25 - 34 . DOI:10.1016/S0301-4622(00)00213-1 . [百度学术]
Yuan Qingqing(袁青青), Yao Jinrong(姚晋荣), Shao Zhengzhong(邵正中). Acta Polymerica Sinica(高分子学报) , 2011 . ( 11 ): 1329 - 1335 . DOI:10.3724/SP.J.1105.2011.11040 . [百度学术]
Li M Z, Lu S Z, Wu Z Y, Yan H J, Mo J Y, Wang L H. J Appl Polym Sci , 2001 . 79 ( 12 ): 2185 - 2191 . DOI:10.1002/1097-4628(20010321)79:12<2185::AID-APP1026>3.0.CO;2-3 . [百度学术]
Mathur A B, Tonelli A, Rathke T, Hudson S. Biopolymers , 1997 . 42 ( 1 ): 61 - 74 . DOI:10.1002/(SICI)1097-0282(199707)42:1<61::AID-BIP6>3.0.CO;2-# . [百度学术]
Venkatesan H, Hu J, Chen J. Polymers , 2018 . 10 ( 3 ): 333 DOI:10.3390/polym10030333 . [百度学术]
Hu X J, Li J G, Bai Y X. Mater Lett , 2017 . 194 224 - 226 . DOI:10.1016/j.matlet.2017.02.057 . [百度学术]
Mollahosseini H, Fashandi H, Khoddami A, Zarrebini M, Nikukar H. J Clean Prod , 2019 . 236 117653 DOI:10.1016/j.jclepro.2019.117653 . [百度学术]
Wang Y, Xu S, Wang R, Chen W, Hou K, Tian C, Ji Y, Yang Q, Yu L, Lu Z, Zhao P, Xia Q, Wang F. Biomater Sci , 2019 . 7 ( 11 ): 4536 - 4546 . DOI:10.1039/C9BM01285K . [百度学术]
Zhou G Q, Shao Z Z, Knight D P, Yan J P, Chen X. Adv Mater , 2009 . 21 ( 3 ): 366 - 370 . DOI:10.1002/adma.200800582 . [百度学术]
Zhang Y H, Shi M J, Li K L, Xing R, Chen Z H, Chen X D, Wang Y F, Liu X F, Liang X Y, Sima Y H, Xu S Q. J Biomater Sci Polym Ed , 2020 . 31 ( 3 ): 376 - 393 . DOI:10.1080/09205063.2019.1692642 . [百度学术]
Yang H, Yu Z, Li K, Jiang L, Liu X, Deng B, Chen F, Xu W. ACS Appl Mater Interfaces , 2019 . 11 ( 30 ): 27426 - 27434 . DOI:10.1021/acsami.9b07646 . [百度学术]
Xu Y, Shao H L, Zhang Y P, Hu X C. J Mater Sci , 2005 . 40 ( 20 ): 5355 - 5358 . DOI:10.1007/s10853-005-4301-9 . [百度学术]
Zhu Z H, Ohgo K, Asakura T. Express Polym Lett , 2008 . 2 ( 12 ): 885 - 889 . DOI:10.3144/expresspolymlett.2008.103 . [百度学术]
Liu R, Zeng W, Tan T, Chen T, Luo Q, Qu D, Tang Y, Long D, Xu H. Transgenic Res , 2019 . 28 ( 5-6 ): 627 - 636 . DOI:10.1007/s11248-019-00175-w . [百度学术]
Wei W, Zhang Y P, Shao H L, Hu X C. J Mater Res , 2011 . 26 ( 9 ): 1100 - 1106 . DOI:10.1557/jmr.2011.47 . [百度学术]
Wei W, Zhang Y P, Zhao Y M, Shao H L, Hu X C. Mater Design , 2012 . 36 816 - 822 . DOI:10.1016/j.matdes.2011.01.060 . [百度学术]
Sun M J, Zhang Y P, Zhao Y M, Shao H L, Hu X C. J Mater Chem , 2012 . 22 ( 35 ): 18372 - 18379 . DOI:10.1039/c2jm32576d . [百度学术]
Jin Y, Hang Y C, Zhang Y P, Shao H L, Hu X C. Mater Res Innov , 2014 . 18 S2-113 - S2-115 . DOI:10.1179/1432891714Z.000000000397 . [百度学术]
Pan H, Zhang Y, Shao H, Hu X, Li X, Tian F, Wang J. J Mater Chem B , 2014 . 2 ( 10 ): 1408 - 1414 . DOI:10.1039/c3tb21148g . [百度学术]
Zhang C, Shao H L, Hu X C, Zhang Y P. Mater Sci Forum , 2017 . 898 2214 - 2223 . DOI:10.4028/www.scientific.net/MSF.898.2214 . [百度学术]
Zhang C, Zhang Y, Shao H, Hu X. ACS Appl Mater Interfaces , 2016 . 8 ( 5 ): 3349 - 3358 . DOI:10.1021/acsami.5b11245 . [百度学术]
Zhang C, Zhang Y P, Luo J, Shi J R, Shao H L, Hu X C. RSC Adv , 2017 . 7 ( 6 ): 3108 - 3116 . DOI:10.1039/C6RA22544F . [百度学术]
Rammensee S, Slotta U, Scheibel T, Bausch A R. Proc Natl Acad Sci USA , 2008 . 105 ( 18 ): 6590 - 6595 . DOI:10.1073/pnas.0709246105 . [百度学术]
Vollrath F, Knight D P. Int J Biol Macromol , 1999 . 24 ( 2–3 ): 243 - 249 . DOI:10.1016/S0141-8130(98)00095-6 . [百度学术]
Martel A, Burghammer M, Davies R, Dicola E, Panine P, Salmon J B, Riekel C. Biomicrofluidics , 2008 . 2 ( 2 ): 24104 DOI:10.1063/1.2943732 . [百度学术]
Martel A, Burghammer M, Davies R J, Di Cola E, Vendrely C, Riekel C. J Am Chem Soc , 2008 . 130 ( 50 ): 17070 - 17074 . DOI:10.1021/ja806654t . [百度学术]
Kinahan M E, Filippidi E, Koster S, Hu X, Evans H M, Pfohl T, Kaplan D L, Wong J. Biomacromolecules , 2011 . 12 ( 5 ): 1504 - 1511 . DOI:10.1021/bm1014624 . [百度学术]
Luo J, Zhang Y, Huang Y, Shao H, Hu X. Sensor Actuat B-Chem , 2012 . 162 ( 1 ): 435 - 440 . DOI:10.1016/j.snb.2011.12.093 . [百度学术]
Peng Q F, Shao H L, Hu X C, Zhang Y P. Macromol Mater Eng , 2017 . 302 ( 10 ): 1700102 DOI:10.1002/mame.201700102 . [百度学术]
Lu L, Fan S N, Niu Q Q, Peng Q F, Geng L H, Yang G S, Shao H L, Hsiao B S, Zhang Y P. ACS Sustain Chem Eng , 2019 . 7 ( 17 ): 14765 - 14774 . DOI:10.1021/acssuschemeng.9b02713 . [百度学术]
Peng Q, Zhang Y, Lu L, Shao H, Qin K, Hu X, Xia X. Sci Rep , 2016 . 6 ( 1 ): 36473 DOI:10.1038/srep36473 . [百度学术]
Li Nan(林楠), Zuo Baoqi(左保齐). Modern Silk Science & Technology(现代丝绸科学与技术) , 2020 . 35 ( 3 ): 32 - 40 . DOI:10.3969/j.issn.1674-8433.2020.03.009 . [百度学术]
Bai Fengjiao(拜凤姣), Wang Hui(王卉), Chen Xiaomin(陈晓敏), Wu Chenxing(吴晨星), Zhang Keqin(张克勤). Materials Reports(材料导报) , 2020 . 34 ( 7 ): 7154 - 7160 . DOI:10.11896/cldb.19040294 . [百度学术]
Liang B, Fang L, Hu Y, Yang G, Zhu Q, Ye X. Nanoscale , 2014 . 6 ( 8 ): 4264 - 4274 . DOI:10.1039/C3NR06057H . [百度学术]
Zhang F, You X, Dou H, Liu Z, Zuo B, Zhang X. ACS Appl Mater Interfaces , 2015 . 7 ( 5 ): 3352 - 3361 . DOI:10.1021/am508319h . [百度学术]
Zhang C, Song D, Lu Q, Hu X, Kaplan D L, Zhu H. Biomacromolecules , 2012 . 13 ( 7 ): 2148 - 2153 . DOI:10.1021/bm300541g . [百度学术]
Wang Y, Ma R, Hu K, Kim S, Fang G, Shao Z, Tsukruk V V. ACS Appl Mater Interfaces , 2016 . 8 ( 37 ): 24962 - 24973 . DOI:10.1021/acsami.6b08610 . [百度学术]
Zhuang A, Bian Y, Zhou J, Fan S, Shao H, Hu X, Zhu B, Zhang Y. ACS Appl Mater Interfaces , 2018 . 10 ( 41 ): 35547 - 35556 . DOI:10.1021/acsami.8b13820 . [百度学术]
Ohgo K, Zhao C H, Kobayashi M, Asakura T. Polymer , 2003 . 44 ( 3 ): 841 - 846 . DOI:10.1016/S0032-3861(02)00819-4 . [百度学术]
Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F. Polymer , 2003 . 44 ( 19 ): 5721 - 5727 . DOI:10.1016/S0032-3861(03)00532-9 . [百度学术]
Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F. Polymer , 2004 . 45 ( 11 ): 3701 - 3708 . DOI:10.1016/j.polymer.2004.03.059 . [百度学术]
Ayutsede J, Gandhi M, Sukigara S, Micklus M, Chen H E, Ko F. Polymer , 2005 . 46 ( 5 ): 1625 - 1634 . DOI:10.1016/j.polymer.2004.11.029 . [百度学术]
Wang H, Zhang Y P, Shao H L, Hu X C. J Mater Sci , 2005 . 40 ( 20 ): 5359 - 5363 . DOI:10.1007/s10853-005-4332-2 . [百度学术]
Zhu J X, Zhang Y P, Shao H L, Hu X C. Polymer , 2008 . 49 ( 12 ): 2880 - 2885 . DOI:10.1016/j.polymer.2008.04.049 . [百度学术]
Hang Y C, Zhang Y P, Jin Y, Shao H L, Hu X C. J Mater Res , 2011 . 26 ( 23 ): 2931 - 2937 . DOI:10.1557/jmr.2011.356 . [百度学术]
Pan H, Zhang Y, Hang Y, Shao H, Hu X, Xu Y, Feng C. Biomacromolecules , 2012 . 13 ( 9 ): 2859 - 2867 . DOI:10.1021/bm300877d . [百度学术]
Fan S, Zhang Y, Shao H, Hu X. Int J Biol Macromol , 2013 . 56 83 - 88 . DOI:10.1016/j.ijbiomac.2013.01.033 . [百度学术]
Xie M, Song L, Wang J, Fan S, Zhang Y, Xu Y. J Surg Res , 2013 . 184 ( 2 ): 774 - 781 . DOI:10.1016/j.jss.2013.04.016 . [百度学术]
Jiang N N, Huang X Y, Li Z B, Song L J, Wang H S, Xu Y M, Shao H L, Zhang Y P. RSC Adv , 2014 . 4 ( 88 ): 47570 - 47575 . DOI:10.1039/C4RA05918B . [百度学术]
Huang L, Huang J, Shao H, Hu X, Cao C, Fan S, Song L, Zhang Y. Mater Sci Eng C Mater Biol Appl , 2019 . 94 179 - 189 . DOI:10.1016/j.msec.2018.09.034 . [百度学术]
Li Z B, Liu Q Q, Wang H S, Song L J, Shao H L, Xie M K, Xu Y M, Zhang Y P. ACS Biomater Sci Eng , 2015 . 1 ( 4 ): 238 - 246 . DOI:10.1021/ab5001436 . [百度学术]
Zhang Y P, Huang J W, Huang L, Liu Q Q, Shao H L, Hu X C, Song L J. ACS Biomater Sci Eng , 2016 . 2 ( 11 ): 2018 - 2025 . DOI:10.1021/acsbiomaterials.6b00436 . [百度学术]
Zhang C, Fan S N, Shao H L, Hu X C, Zhu B, Zhang Y P. Carbon , 2019 . 148 16 - 27. [百度学术]
Xu L, Wang S, Sui X, Wang Y, Su Y, Huang L, Zhang Y, Chen Z, Chen Q, Du H, Zhang Y, Yan L. ACS Appl Mater Interfaces , 2017 . 9 ( 17 ): 14716 - 14723 . DOI:10.1021/acsami.7b02805 . [百度学术]
Li X, You R, Luo Z, Chen G, Li M. J Mater Chem B , 2016 . 4 ( 17 ): 2903 - 2912 . DOI:10.1039/C6TB00213G . [百度学术]
Li D W, Lei X, He F L, He J, Liu Y L, Ye Y J, Deng X, Duan E, Yin D C. Int J Biol Macromol , 2017 . 105 584 - 597 . DOI:10.1016/j.ijbiomac.2017.07.080 . [百度学术]
Chen J, Zhuang A, Shao H, Hu X, Zhang Y. J Mater Chem B , 2017 . 5 ( 20 ): 3640 - 3650 . DOI:10.1039/C7TB00485K . [百度学术]
Du X, Wei D, Huang L, Zhu M, Zhang Y, Zhu Y. Mater Sci Eng C Mater Biol Appl , 2019 . 103 109731 DOI:10.1016/j.msec.2019.05.016 . [百度学术]
Huang T, Fan C Q, Zhu M, Zhu Y F, Zhang W Z, Li L. Appl Surf Sci , 2019 . 467-468 345 - 353 . DOI:10.1016/j.apsusc.2018.10.166 . [百度学术]
Zheng Z, Wu J, Liu M, Wang H, Li C, Rodriguez M J, Li G, Wang X, Kaplan D L. Adv Healthc Mater , 2018 . 7 ( 6 ): 1701026 DOI:10.1002/adhm.201701026 . [百度学术]
Shi W, Sun M, Hu X, Ren B, Cheng J, Li C, Duan X, Fu X, Zhang J, Chen H, Ao Y. Adv Mater , 2017 . 29 ( 29 ): 1701089 DOI:10.1002/adma.201701089 . [百度学术]
Huang L, Du X, Fan S, Yang G, Shao H, Li D, Cao C, Zhu Y, Zhu M, Zhang Y. Carbohydr Polym , 2019 . 221 146 - 156 . DOI:10.1016/j.carbpol.2019.05.080 . [百度学术]
Wei L, Wu S, Kuss M, Jiang X, Sun R, Reid P, Qin X, Duan B. Bioact Mater , 2019 . 4 256 - 260 . DOI:10.1016/j.bioactmat.2019.09.001 . [百度学术]
Compaan A M, Christensen K, Huang Y. ACS Biomater Sci Eng , 2017 . 3 ( 8 ): 1519 - 1526. [百度学术]
Kim S H, Yeon Y K, Lee J M, Chao J R, Lee Y J, Seo Y B, Sultan M T, Lee O J, Lee J S, Yoon S I, Hong I S, Khang G, Lee S J, Yoo J J, Park C H. Nat Commun , 2018 . 9 ( 1 ): 1620 DOI:10.1038/s41467-018-03759-y . [百度学术]
Wu Y, Wang L, Guo B, Ma P X. ACS Nano , 2017 . 11 ( 6 ): 5646 - 5659 . DOI:10.1021/acsnano.7b01062 . [百度学术]
Wang C, Xia K, Zhang Y, Kaplan D L. Acc Chem Res , 2019 . 52 ( 10 ): 2916 - 2927 . DOI:10.1021/acs.accounts.9b00333 . [百度学术]
Wen D L, Liu X, Deng H T, Sun D H, Qian H Y, Brugger J, Zhang X S. Nano Energy , 2019 . 66 104123 DOI:10.1016/j.nanoen.2019.104123 . [百度学术]
Kook G, Jeong S, Kim S H, Kim M K, Lee S, Cho I J, Choi N, Lee H J. ACS Appl Mater Interfaces , 2019 . 11 ( 1 ): 115 - 124 . DOI:10.1021/acsami.8b13170 . [百度学术]
Zhang Y, Zhou Z, Sun L, Liu Z, Xia X, Tao T H. Adv Mater , 2018 . 30 ( 50 ): 1805722 DOI:10.1002/adma.201805722 . [百度学术]
Pal R K, Kundu S C, Yadavalli V K. ACS Appl Mater Interfaces , 2018 . 10 ( 11 ): 9620 - 9628 . DOI:10.1021/acsami.7b19309 . [百度学术]
Wang H, Zhu B, Ma X, Hao Y, Chen X. Small , 2016 . 12 ( 20 ): 2715 - 2719 . DOI:10.1002/smll.201502906 . [百度学术]
Kook G, Jeong S, Kim M, Lee S, Kim H, Choi N, Lee H J. Wafer-scale fabrication of biodegradable silk-fibroin-based memristors. In: 2018 IEEE Micro Electro Mechanical Systems (MEMS), 2018. 86−89
[百度学术]Wang C Y, Xia K L, Jian M Q, Wang H M, Zhang M C, Zhang Y Y. J Mater Chem C , 2017 . 5 ( 30 ): 7604 - 7611 . DOI:10.1039/C7TC01962A . [百度学术]
Jia X T, Wang C Y, Ranganathan V, Napier B, Yu C C, Chao Y F, Forsyth M, Omenetto F G, MacFarlane D R, Wallace G G. ACS Energy Lett , 2017 . 2 ( 4 ): 831 - 836 . DOI:10.1021/acsenergylett.7b00012 . [百度学术]
Pal R K, Farghaly A A, Collinson M M, Kundu S C, Yadavalli V K. Adv Mater , 2016 . 28 ( 7 ): 1406 - 1412 . DOI:10.1002/adma.201504736 . [百度学术]
Yin Z, Jian M, Wang C, Xia K, Liu Z, Wang Q, Zhang M, Wang H, Liang X, Liang X, Long Y, Yu X, Zhang Y. Nano Lett , 2018 . 18 ( 11 ): 7085 - 7091 . DOI:10.1021/acs.nanolett.8b03085 . [百度学术]
Tullii G, Donini S, Bossio C, Lodola F, Pasini M, Parisini E, Galeotti F, Antognazza M R. ACS Appl Mater Interfaces , 2020 . 12 ( 5 ): 5437 - 5446 . DOI:10.1021/acsami.9b18187 . [百度学术]
Luo Y, Pei Y, Feng X, Zhang H, Lu B, Wang L. Mater Lett , 2020 . 260 126945 DOI:10.1016/j.matlet.2019.126945 . [百度学术]
Kim H S, Cha S H, Roy B, Kim S, Ahn Y H. Opt Express , 2018 . 26 ( 26 ): 33575 - 33581 . DOI:10.1364/OE.26.033575 . [百度学术]
Liu C R, Li J Q, Che L F, Chen S Q, Wang Z K, Zhou X F. Nano Energy , 2017 . 41 359 - 366 . DOI:10.1016/j.nanoen.2017.09.038 . [百度学术]
Kim K N, Chun J, Chae S A, Ahn C W, Kim I W, Kim S W, Wang Z L, Baik J M. Nano Energy , 2015 . 14 87 - 94 . DOI:10.1016/j.nanoen.2015.01.004 . [百度学术]
Jiang C M, Wu C, Li X J, Yao Y, Lan L Y, Zhao F N, Ye Z Z, Ying Y B, Ping J F. Nano Energy , 2019 . 59 268 - 276 . DOI:10.1016/j.nanoen.2019.02.052 . [百度学术]
Liu C R, Wang Y S, Zhang N, Yang X, Wang Z K, Zhao L B, Yang W H, Dong L X, Che L F, Wang G F, Zhou X F. Nano Energy , 2020 . 67 104228 DOI:10.1016/j.nanoen.2019.104228 . [百度学术]
Ye C, Xu Q, Ren J, Ling S. Adv Fiber Mater , 2020 . 2 ( 1 ): 24 - 33 . DOI:10.1007/s42765-019-00023-w . [百度学术]
Jiang W, Li H, Liu Z, Li Z, Tian J, Shi B, Zou Y, Ouyang H, Zhao C, Zhao L, Sun R, Zheng H, Fan Y, Wang Z L, Li Z. Adv Mater , 2018 . 30 ( 32 ): 1801895 DOI:10.1002/adma.201801895 . [百度学术]
Hota M K, Bera M K, Kundu B, Kundu S C, Maiti C K. Adv Funct Mater , 2012 . 22 ( 21 ): 4493 - 4499 . DOI:10.1002/adfm.201200073 . [百度学术]
Xing Y, Shi C, Zhao J, Qiu W, Lin N, Wang J, Yan X B, Yu W D, Liu X Y. Small , 2017 . 13 ( 40 ): 1702390 DOI:10.1002/smll.201702390 . [百度学术]
Shi C Y, Wang J J, Sushko M R A, Qiu W, Yan X B, Liu X Y. Adv Funct Mater , 2019 . 29 ( 42 ): 1904777 DOI:10.1002/adfm.201904777 . [百度学术]
Wang H, Zhu B, Wang H, Ma X, Hao Y, Chen X. Small , 2016 . 12 ( 25 ): 3360 - 3365 . DOI:10.1002/smll.201600893 . [百度学术]
Wang H, Du Y M, Li Y T, Zhu B W, Leow W R, Li Y G, Pan J S, Wu T, Chen X D. Adv Funct Mater , 2015 . 25 ( 25 ): 3825 - 3831 . DOI:10.1002/adfm.201501389 . [百度学术]
Zhang M, Wang C, Wang Q, Jian M, Zhang Y. ACS Appl Mater Interfaces , 2016 . 8 ( 32 ): 20894 - 20899 . DOI:10.1021/acsami.6b06984 . [百度学术]
Wang S, Ning H M, Hu N, Liu Y L, Liu F, Zou R, Huang K Y, Wu X P, Weng S Y, Alamusi. Adv Mater Interfaces , 2020 . 7 ( 1 ): 1901507 DOI:10.1002/admi.201901507 . [百度学术]
Lund A, Darabi S, Hultmark S, Ryan J D, Andersson B, Strom A, Muller C. Adv Mater Technol-US , 2018 . 3 ( 12 ): 1800251 DOI:10.1002/admt.201800251 . [百度学术]
Ryan J D, Mengistie D A, Gabrielsson R, Lund A, Muller C. ACS Appl Mater Interfaces , 2017 . 9 ( 10 ): 9045 - 9050 . DOI:10.1021/acsami.7b00530 . [百度学术]
Cho S Y, Yun Y S, Lee S, Jang D, Park K Y, Kim J K, Kim B H, Kang K, Kaplan D L, Jin H J. Nat Commun , 2015 . 6 ( 1 ): 7145 DOI:10.1038/ncomms8145 . [百度学术]
Wang C, Li X, Gao E, Jian M, Xia K, Wang Q, Xu Z, Ren T, Zhang Y. Adv Mater , 2016 . 28 ( 31 ): 6640 - 6648 . DOI:10.1002/adma.201601572 . [百度学术]
Wang Q, Jian M Q, Wang C Y, Zhang Y Y. Adv Funct Mater , 2017 . 27 1605657 DOI:10.1002/adfm.201605657 . [百度学术]
Yin Z, Shi S, Liang X, Zhang M, Zheng Q, Zhang Y. Adv Fiber Mater , 2019 . 1 ( 3 ): 197 - 204 . DOI:10.1007/s42765-019-00021-y . [百度学术]
Gong Z, Huang L, Yang Y, Chen X, Shao Z. Chem Commun , 2009 . 48 7506 - 7508 . DOI:10.1039/b914218e . [百度学术]
Bai S, Liu S, Zhang C, Xu W, Lu Q, Han H, Kaplan D L, Zhu H. Acta Biomater , 2013 . 9 ( 8 ): 7806 - 7813 . DOI:10.1016/j.actbio.2013.04.033 . [百度学术]
Gong Z G, Yang Y H, Huang L, Chen X, Shao Z Z. Soft Matter , 2010 . 6 ( 6 ): 1217 - 1223 . DOI:10.1039/b913510c . [百度学术]
Bai S, Zhang X, Lu Q, Sheng W, Liu L, Dong B, Kaplan D L, Zhu H. Biomacromolecules , 2014 . 15 ( 8 ): 3044 - 3051 . DOI:10.1021/bm500662z . [百度学术]
Ling S, Qin Z, Huang W, Cao S, Kaplan D L, Buehler M J. Sci Adv , 2017 . 3 ( 4 ): e1601939 DOI:10.1126/sciadv.1601939 . [百度学术]
Wang X, Ding Z, Wang C, Chen X, Xu H, Lu Q, Kaplan D L. J Mater Chem B , 2018 . 6 ( 18 ): 2739 - 2746 . DOI:10.1039/C8TB00607E . [百度学术]
Ling S, Jin K, Qin Z, Li C, Zheng K, Zhao Y, Wang Q, Kaplan D L, Buehler M J. Adv Mater , 2018 . 30 ( 43 ): 1802306 DOI:10.1002/adma.201802306 . [百度学术]
Ling S J, Li C X, Adamcik J, Wang S H, Shao Z Z, Chen X, Mezzenga R. ACS Macro Lett , 2014 . 3 ( 2 ): 146 - 152 . DOI:10.1021/mz400639y . [百度学术]
Wang Y X, Song Y F, Wang Y, Chen X, Xia Y Y, Shao Z Z. J Mater Chem A , 2015 . 3 ( 2 ): 773 - 781 . DOI:10.1039/C4TA04772A . [百度学术]
Rath T, Pramanik N, Kumar S. Energy , 2017 . 141 1982 - 1988 . DOI:10.1016/j.energy.2017.11.126 . [百度学术]
Zhao H P, Feng X Q, Gao H J. Appl Phys Lett , 2007 . 90 ( 7 ): 073112 DOI:10.1063/1.2450666 . [百度学术]
Zhang F, Lu Q, Ming J, Dou H, Liu Z, Zuo B, Qin M, Li F, Kaplan D L, Zhang X. J Mater Chem B , 2014 . 2 ( 24 ): 3879 - 3885 . DOI:10.1039/c3tb21582b . [百度学术]
Niu Q, Peng Q, Lu L, Fan S, Shao H, Zhang H, Wu R, Hsiao B S, Zhang Y. ACS Nano , 2018 . 12 ( 12 ): 11860 - 11870 . DOI:10.1021/acsnano.8b03943 . [百度学术]
Ling S, Li C, Jin K, Kaplan D L, Buehler M J. Adv Mater , 2016 . 28 ( 35 ): 7783 - 7790 . DOI:10.1002/adma.201601783 . [百度学术]
Niu Q, Huang L, Lv S, Shao H, Fan S, Zhang Y. Nano Energy , 2020 . 74 104837 DOI:10.1016/j.nanoen.2020.104837 . [百度学术]
Iizuka T, Sezutsu H, Tatematsu K, Kobayashi I, Yonemura N, Uchino K, Nakajima K, Kojima K, Takabayashi C, Machii H, Yamada K, Kurihara H, Asakura T, Nakazawa Y, Miyawaki A, Karasawa S, Kobayashi H, Yamaguchi J, Kuwabara N, Nakamura T, Yoshii K, Tamura T. Adv Funct Mater , 2013 . 23 ( 42 ): 5232 - 5239 . DOI:10.1002/adfm.201300365 . [百度学术]
Teramoto H, Amano Y, Iraha F, Kojima K, Ito T, Sakamoto K. ACS Synth Biol , 2018 . 7 ( 3 ): 801 - 806 . DOI:10.1021/acssynbio.7b00437 . [百度学术]
Tansil N C, Li Y, Koh L D, Peng T C, Win K Y, Liu X Y, Han M Y. Biomaterials , 2011 . 32 ( 36 ): 9576 - 9583 . DOI:10.1016/j.biomaterials.2011.08.081 . [百度学术]
Tansil N C, Li Y, Teng C P, Zhang S, Win K Y, Chen X, Liu X Y, Han M Y. Adv Mater , 2011 . 23 ( 12 ): 1463 - 1466 . DOI:10.1002/adma.201003860 . [百度学术]
Tansil N C, Koh L D, Han M-Y. Adv Mater , 2012 . 24 ( 11 ): 1388 - 1397 . DOI:10.1002/adma.201104118 . [百度学术]
Cai L Y, Shao H L, Hu X C, Zhang Y P. ACS Sustain Chem Eng , 2015 . 3 ( 10 ): 2551 - 2557 . DOI:10.1021/acssuschemeng.5b00749 . [百度学术]
Fan S N, Zheng X T, Zhan Q, Zhang H H, Shao H L, Wang J X, Cao C B, Zhu M F, Wang D, Zhang Y P. Nano-Micro Lett , 2019 . 11 ( 1 ): 75 DOI:10.1007/s40820-019-0303-z . [百度学术]
Wang Q, Wang C, Zhang M, Jian M, Zhang Y. Nano Lett , 2016 . 16 ( 10 ): 6695 - 6700 . DOI:10.1021/acs.nanolett.6b03597 . [百度学术]
Cheng L, Huang H, Chen S, Wang W, Dai F, Zhao H. Mater Design , 2017 . 129 125 - 134 . DOI:10.1016/j.matdes.2017.04.096 . [百度学术]
Zhan Q, Fan S, Wang D, Yao X, Shao H, Zhang Y. Compos Commun , 2020 . 21 100414 DOI:10.1016/j.coco.2020.100414 . [百度学术]
0
浏览量
95
下载量
3
CSCD
相关文章
相关作者
相关机构