浏览全部资源
扫码关注微信
1.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京 100190
2.中国科学院大学 北京 100049
[ "苏允兰,女,1974年生. 博士,中国科学院化学研究所副研究员. 1996年获中国海洋大学海洋化学系理学学士,2000年获中国科学院生态环境研究中心理学硕士,2003年获北京大学化学与分子工程学院理学博士,2004~2006年清华大学化学系博士后. 自2006年1月起在中国科学院化学研究所工作. 2013年10月~2014年10月在德国汉堡工业大学做访问学者. 研究方向为聚合物基纳米复合材料的界面微观结构与宏观性能之间的关系,已发表学术论文80余篇,他引1500次" ]
纸质出版日期:2021-2-3,
网络出版日期:2020-10-26,
收稿日期:2020-8-10,
修回日期:2020-9-21,
扫 描 看 全 文
李少范, 温向宁, 鞠维龙, 苏允兰, 王笃金. 粒子-聚合物相互作用与粒子-粒子相互作用对聚合物基纳米复合物力学性能的影响[J]. 高分子学报, 2021,52(2):146-157.
Shao-fan Li, Xiang-ning Wen, Wei-long Ju, Yun-lan Su, Du-jin Wang. Effects of Particle-polymer Interactions and Particle-particle Interactions on Mechanical Properties of Polymer Nanocomposites[J]. Acta Polymerica Sinica, 2021,52(2):146-157.
李少范, 温向宁, 鞠维龙, 苏允兰, 王笃金. 粒子-聚合物相互作用与粒子-粒子相互作用对聚合物基纳米复合物力学性能的影响[J]. 高分子学报, 2021,52(2):146-157. DOI: 10.11777/j.issn1000-3304.2020.20189.
Shao-fan Li, Xiang-ning Wen, Wei-long Ju, Yun-lan Su, Du-jin Wang. Effects of Particle-polymer Interactions and Particle-particle Interactions on Mechanical Properties of Polymer Nanocomposites[J]. Acta Polymerica Sinica, 2021,52(2):146-157. DOI: 10.11777/j.issn1000-3304.2020.20189.
聚合物基纳米复合物(PNCs)具有比传统高分子材料更加优异的光学、力学、热力学等性能,广泛应用于各个工程领域. 而纳米粒子(NPs)对材料性能提高的机理则是当前聚合物纳米复合物领域研究的重要问题,聚合物纳米复合体系相互作用的影响因素众多,至今尚未明确并完整建立复合体系相互作用与性能增强之间的关系. 本文总结了近年来关于纳米粒子填充聚合物基体力学性能的研究,从粒子-聚合物相互作用和粒子-粒子相互作用角度阐述了聚合物纳米复合体系力学性能的增强机理,并根据体系中不同的结构关系分别总结了聚合物/未改性纳米粒子复合体系和聚合物/聚合物接枝纳米粒子复合体系中影响力学性能的因素. 该部分内容具有重要的理论和实践意义,有助于构建复合体系微观结构与宏观性能之间的关系,进而对微观层面调控PNCs的力学性能提供指导.
The inclusion of nanoparticles (NPs) or polymer-grafted nanoparticles (PGNPs) can impart the polymeric materials with enhanced properties in polymer nanocomposites (PNCs). Compared to the traditional polymer materials
the excellent performances of PNCs such as superior mechanical
thermodynamic
and optical properties have become a prominent aspect of scientific research. However
it still remains unclear about the relationship between interfacial interactions and mechanical enhancement in PNCs because the various factors
i.e.
grafting density
σ
(chains/nm
2
)
the chain length of matrix versus the grafted polymer (
P
/
N
) and nanoparticle size can complicatedly affect the interfacial characteristics. Understanding the enhancement mechanism of the NPs/PGNPs in PNCs is
therefore
of crucial importance to modulate the properties of PNCs. Based on the successes and failures of the previous study
this review summarizes the mechanism of mechanical enhancement in PNCs
mainly from two perspectives: "particle-polymer interaction" and "particle-particle interaction". According to the different structural and conformation properties in PNCs
these two aspects are discussed in polymer/NPs nanocomposites and polymer/PGNPs nanocomposites
respectively. Strong reinforcement in PNCs inclusion of unmodified NPs is obtained at low NPs contents due to the overlapping of the glassy layer between NPs
and the network structure occurring at high NPs contents can significantly improve the mechanical properties of the polymer/NPs system. The decoration of grafted chains on the NPs surface can remarkably enhance the interfacial interactions between NPs and matrix. Mechanical properties of the grafted system can be affected by the different dispersion states of PGNPs
through controlling
σ
P
/
N
and NPs size. The "particle-particle interaction" under different aggregates is the main contribution to the enhancement of the mechanical properties in polymer/PGNPs system. It is anticipated that this review can be helpful to establish the relationship between the microstructure and macroscopic performance in PNCs and to provide guidance on modulating the mechanical properties of PNCs.
聚合物基纳米复合物粒子-聚合物间相互作用粒子-粒子间相互作用力学性能
Polymer nanocompositesPolymer-nanoparticle interactionNanoparticle-nanoparticle interactionMechanical properties
Cai H Y, Peng F C, Wang Y X, Yi J Y, Cai X W, Liu H, Kong Q H. J Nanosci Nanotechnol , 2020 . 20 ( 10 ): 6406 - 6412 . DOI:10.1166/jnn.2020.18120http://doi.org/10.1166/jnn.2020.18120 .
Uyor U O, Popoola A P I, Popoola O M, Aigbodion V S. J Thermoplast Compos Mater , 2020 . 33 ( 2 ): 270 - 285 . DOI:10.1177/0892705718805522http://doi.org/10.1177/0892705718805522 .
Alexandre M, Dubois P. Mater Sci Eng R-Rep , 2000 . 28 (1-2 ): 1 - 63 . DOI:10.1016/S0927-796X(00)00012-7http://doi.org/10.1016/S0927-796X(00)00012-7 .
Thostenson E T, Ren Z F, Chou T W. Compos Sci Technol , 2001 . 61 ( 13 ): 1899 - 1912 . DOI:10.1016/S0266-3538(01)00094-Xhttp://doi.org/10.1016/S0266-3538(01)00094-X .
Wetzel B, Haupert F, Zhang M Q. Compos Sci Technol , 2003 . 63 ( 14 ): 2055 - 2067 . DOI:10.1016/S0266-3538(03)00115-5http://doi.org/10.1016/S0266-3538(03)00115-5 .
Fu S Y, Feng X Q, Lauke B, Mai Y W. Compos Pt B-Eng , 2008 . 39 ( 6 ): 933 - 961 . DOI:10.1016/j.compositesb.2008.01.002http://doi.org/10.1016/j.compositesb.2008.01.002 .
Kozlov G V. Physics-Uspekhi , 2015 . 58 ( 1 ): 33 - 60 . DOI:10.3367/UFNe.0185.201501c.0035http://doi.org/10.3367/UFNe.0185.201501c.0035 .
Kumar S K, Krishnamoorti R. Annu Rev Chem Biomol Eng, 2010, 1: 37−58
Song Y H, Zheng Q. Prog Mater Sci , 2016 . 84 1 - 58 . DOI:10.1016/j.pmatsci.2016.09.002http://doi.org/10.1016/j.pmatsci.2016.09.002 .
Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Prog Polym Sci , 2013 . 38 ( 8 ): 1232 - 1261 . DOI:10.1016/j.progpolymsci.2013.02.003http://doi.org/10.1016/j.progpolymsci.2013.02.003 .
Zhao D, Ge S F, Senses E, Akcora P, Jestin J, Kumar S K. Macromolecules , 2015 . 48 ( 15 ): 5433 - 5438 . DOI:10.1021/acs.macromol.5b00962http://doi.org/10.1021/acs.macromol.5b00962 .
Heinrich G, Kluppel M, Kumar M, Kumar N, Domb A J, Arora M, Prokop A, Kozlov E, Carlesso G, Davidson J M. Filled Elastomers Drug Delivery Systems. Berlin: Springer-Verlag, 2002. 1−44
Gusev A A. Macromolecules , 2006 . 39 ( 18 ): 5960 - 5962 . DOI:10.1021/ma061308zhttp://doi.org/10.1021/ma061308z .
Moll J F, Akcora P, Rungta A, Gong S, Colby R H, Benicewicz B C, Kumar S K. Macromolecules , 2011 . 44 ( 18 ): 7473 - 7477 . DOI:10.1021/ma201200mhttp://doi.org/10.1021/ma201200m .
Long D, Sotta P. Rheol Acta , 2007 . 46 ( 8 ): 1029 - 1044 . DOI:10.1007/s00397-007-0187-6http://doi.org/10.1007/s00397-007-0187-6 .
Zhu Z Y, Thompson T, Wang S Q, von Meerwall E D, Halasa A. Macromolecules , 2005 . 38 ( 21 ): 8816 - 8824 . DOI:10.1021/ma050922shttp://doi.org/10.1021/ma050922s .
Rong M Z, Zhang M Q, Zheng Y X, Zeng H M, Walter R, Friedrich K. Polymer , 2001 . 42 ( 1 ): 167 - 183 . DOI:10.1016/S0032-3861(00)00325-6http://doi.org/10.1016/S0032-3861(00)00325-6 .
Bieligmeyer M, Taheri S M, German I, Boisson C, Probst C, Milius W, Altstadt V, Breu J, Schmidt H W, D'Agosto F, Forster S. J Am Chem Soc , 2012 . 134 ( 44 ): 18157 - 18160 . DOI:10.1021/ja307297chttp://doi.org/10.1021/ja307297c .
Akcora P, Liu H, Kumar S K, Moll J, Li Y, Benicewicz B C, Schadler L S, Acehan D, Panagiotopoulos A Z, Pryamitsyn V, Ganesan V, Ilavsky J, Thiyagarajan P, Colby R H, Douglas J F. Nat Mater , 2009 . 8 354 - 359 . DOI:10.1038/nmat2404http://doi.org/10.1038/nmat2404 .
Qian Hujun(钱虎军), Lu Zhongyuan(吕中元). Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 1 ): 55 - 65 . DOI:10.11777/j.issn1000-3304.2020.19152http://doi.org/10.11777/j.issn1000-3304.2020.19152 .
Liu Jun(刘军), Shen Jianxiang(沈建祥), Cao Dapeng(曹达鹏), Zhang Liqun(张立群). Acta Polymerica Sinica(高分子学报) , 2016 . ( 8 ): 1048 - 1061 . DOI:10.11777/j.issn1000-3304.2016.16105http://doi.org/10.11777/j.issn1000-3304.2016.16105 .
Genix A C, Bocharova V, Kisliuk A, Carroll B, Zhao S, Oberdisse J, Sokolov A P. ACS Appl Mater Interfaces , 2018 . 10 ( 39 ): 33601 - 33610 . DOI:10.1021/acsami.8b13109http://doi.org/10.1021/acsami.8b13109 .
Carroll B, Cheng S, Sokolov A P. Macromolecules , 2017 . 50 ( 16 ): 6149 - 6163 . DOI:10.1021/acs.macromol.7b00825http://doi.org/10.1021/acs.macromol.7b00825 .
Berriot J, Montes H, Lequeux F, Long D, Sotta P. Macromolecules , 2002 . 35 ( 26 ): 9756 - 9762 . DOI:10.1021/ma0212700http://doi.org/10.1021/ma0212700 .
Harton S E, Kumar S K, Yang H, Koga T, Hicks K, Lee E, Mijovic J, Liu M, Vallery R S, Gidley D W. Macromolecules , 2010 . 43 ( 7 ): 3415 - 3421 . DOI:10.1021/ma902484dhttp://doi.org/10.1021/ma902484d .
Rittigstein P, Priestley R D, Broadbelt L J, Torkelson J M. Nat Mater , 2007 . 6 ( 4 ): 278 - 282 . DOI:10.1038/nmat1870http://doi.org/10.1038/nmat1870 .
Holt A P, Griffin P J, Bocharova V, Agapov A L, Imel A E, Dadmun M D, Sangoro J R, Sokolov A P. Macromolecules , 2014 . 47 ( 5 ): 1837 - 1843 . DOI:10.1021/ma5000317http://doi.org/10.1021/ma5000317 .
Nguyen H K, Liang X, Ito M, Nakajima K. Macromolecules , 2018 . 51 ( 15 ): 6085 - 6091 . DOI:10.1021/acs.macromol.8b01185http://doi.org/10.1021/acs.macromol.8b01185 .
Mortazavian H, Fennell C J, Blum F D. Macromolecules , 2016 . 49 ( 1 ): 298 - 307 . DOI:10.1021/acs.macromol.5b02214http://doi.org/10.1021/acs.macromol.5b02214 .
Xu J Q, Liu Z S, Lan Y, Zuo B, Wang X P, Yang J P, Zhang W, Hu W B. Macromolecules , 2017 . 50 ( 17 ): 6804 - 6812 . DOI:10.1021/acs.macromol.7b00922http://doi.org/10.1021/acs.macromol.7b00922 .
Jouault N, Dalmas F, Boué F, Jestin J. Polymer , 2012 . 53 ( 3 ): 761 - 775 . DOI:10.1016/j.polymer.2011.12.001http://doi.org/10.1016/j.polymer.2011.12.001 .
Long D, Lequeux F. Eur Phys J E , 2001 . 4 ( 3 ): 371 - 387 . DOI:10.1007/s101890170120http://doi.org/10.1007/s101890170120 .
Merabia S, Sotta P, Long D R. Macromolecules , 2008 . 41 ( 21 ): 8252 - 8266 . DOI:10.1021/ma8014728http://doi.org/10.1021/ma8014728 .
Montes H, Lequeux F, Berriot J. Macromolecules , 2003 . 36 ( 21 ): 8107 - 8118 . DOI:10.1021/ma0344590http://doi.org/10.1021/ma0344590 .
Cheng S W, Carroll B, Lu W, Fan F, Carrillo J M Y, Martin H, Holt A P, Kang N-G, Bocharova V, Mays J W, Sumpter B G, Dadmun M, Sokolov A P. Macromolecules , 2017 . 50 ( 6 ): 2397 - 2406 . DOI:10.1021/acs.macromol.6b02816http://doi.org/10.1021/acs.macromol.6b02816 .
Gong S S, Chen Q, Moll J F, Kumar S K, Colby R H. ACS Macro Lett , 2014 . 3 ( 8 ): 773 - 777 . DOI:10.1021/mz500252fhttp://doi.org/10.1021/mz500252f .
Cheng S W, Bocharova V, Belianinov A, Xiong S, Kisliuk A, Somnath S, Holt A P, Ovchinnikova O S, Jesse S, Martin H, Etampawala T, Dadmun M, Sokolov A P. Nano Lett , 2016 . 16 ( 6 ): 3630 - 3637.
Mujtaba A, Keller M, Ilisch S, Radusch H J, Beiner M, Thurn-Albrecht T, Saalwaechter K. ACS Macro Lett , 2014 . 3 ( 5 ): 481 - 485.
Jiang B W, Zhu L Q, Zhao C Z, Chen Z R. Polym Compos , 2017 . 38 ( 6 ): 1112 - 1117.
Baeza G P, Dessi C, Costanzo S, Zhao D, Gong S, Alegria A, Colby R H, Rubinstein M, Vlassopoulos D, Kumar S K. Nat Commun , 2016 . 7 1 - 6.
Zhang Q, Archer L A. Langmuir , 2002 . 18 ( 26 ): 10435 - 10442.
Chen Q, Gong S, Moll J, Zhao D, Kumar S K, Colby R H. ACS Macro Lett , 2015 . 4 ( 4 ): 398 - 402 . DOI:10.1021/acsmacrolett.5b00002http://doi.org/10.1021/acsmacrolett.5b00002 .
Mermet-Guyennet M R B, de Castro J G, Varol H S, Habibi M, Hosseinkhani B, Martzel N, Sprik R, Denn M M, Zaccone A, Parekh S H, Bonn D. Polymer , 2015 . 73 170 - 173 . DOI:10.1016/j.polymer.2015.07.041http://doi.org/10.1016/j.polymer.2015.07.041 .
Zhu A J, Sternstein S S. Compos Sci Technol , 2003 . 63 ( 8 ): 1113 - 1126 . DOI:10.1016/S0266-3538(03)00032-0http://doi.org/10.1016/S0266-3538(03)00032-0 .
Sternstein S S, Zhu A J. Macromolecules , 2002 . 35 ( 19 ): 7262 - 7273 . DOI:10.1021/ma020482uhttp://doi.org/10.1021/ma020482u .
Jouault N, Vallat P, Dalmas F, Said S, Jestin J, Boué F. Macromolecules , 2009 . 42 ( 6 ): 2031 - 2040 . DOI:10.1021/ma801908uhttp://doi.org/10.1021/ma801908u .
Akcora P, Kumar S K, Moll J, Lewis S, Schadler L S, Li Y, Benicewicz B C, Sandy A, Narayanan S, Ilavsky J, Thiyagarajan P, Colby R H, Douglas J F. Macromolecules , 2010 . 43 ( 2 ): 1003 - 1010 . DOI:10.1021/ma902072dhttp://doi.org/10.1021/ma902072d .
Akcora P, Kumar S K, Sakai V G, Li Y, Benicewicz B C, Schadler L S. Macromolecules , 2010 . 43 ( 19 ): 8275 - 8281 . DOI:10.1021/ma101240jhttp://doi.org/10.1021/ma101240j .
Srivastava S, Agarwal P, Archer L A. Langmuir , 2012 . 28 ( 15 ): 6276 - 6281 . DOI:10.1021/la2049234http://doi.org/10.1021/la2049234 .
Chevigny C, Dalmas F, Di Cola E, Gigmes D, Bertin D, Boue F, Jestin J. Macromolecules , 2011 . 44 ( 1 ): 122 - 133 . DOI:10.1021/ma101332shttp://doi.org/10.1021/ma101332s .
Senses E, Jiao Y, Akcora P. Soft Matter , 2014 . 10 ( 25 ): 4464 - 4470 . DOI:10.1039/C4SM00460Dhttp://doi.org/10.1039/C4SM00460D .
Hashemi A, Jouault N, Williams G A, Zhao D, Cheng K J, Kysar J W, Guan Z, Kumar S K. Nano Lett , 2015 . 15 ( 8 ): 5465 - 5471 . DOI:10.1021/acs.nanolett.5b01859http://doi.org/10.1021/acs.nanolett.5b01859 .
Maillard D, Kumar S K, Fragneaud B, Kysar J W, Rungta A, Benicewicz B C, Deng H, Brinson L C, Douglas J F. Nano Lett , 2012 . 12 ( 8 ): 3909 - 3914 . DOI:10.1021/nl301792ghttp://doi.org/10.1021/nl301792g .
Lin Y, Hu S N, Wu G Z. J Phys Chem C , 2019 . 123 ( 11 ): 6616 - 6626 . DOI:10.1021/acs.jpcc.8b12519http://doi.org/10.1021/acs.jpcc.8b12519 .
Abbas Z M, Tawfilas M, Khani M M, Golian K, Marsh Z M, Jhalaria M, Simonutti R, Stefik M, Kumar S K, Benicewicz B C. Polymer , 2019 . 171 96 - 105 . DOI:10.1016/j.polymer.2019.03.031http://doi.org/10.1016/j.polymer.2019.03.031 .
Wu F, Zhang B, Yang W, Liu Z Y, Yang M B. Polymer , 2014 . 55 ( 22 ): 5760 - 5772 . DOI:10.1016/j.polymer.2014.08.070http://doi.org/10.1016/j.polymer.2014.08.070 .
Chevigny C, Jouault N, Dalmas F, Boue F, Jestin J. J Polym Sci, Part B: Polym Phys , 2011 . 49 ( 11 ): 781 - 791 . DOI:10.1002/polb.22246http://doi.org/10.1002/polb.22246 .
Pirner D, Dulle M, Foerster S. Polymer , 2018 . 145 101 - 107 . DOI:10.1016/j.polymer.2018.04.035http://doi.org/10.1016/j.polymer.2018.04.035 .
Jancar J, Fekete E, Hornsby P, Jancar J, Pukánszky B, Rothon R. Mineral Fillers in Thermoplastics I. Berlin: Springer-Verlag, 1999. 155–217
Al-Saleh M H, Sundararaj U. Compos Part A , 2011 . ( 42 ): 2126 - 2142.
Oberdisse J. Soft Matter , 2006 . 2 ( 1 ): 29 - 36 . DOI:10.1039/B511959Fhttp://doi.org/10.1039/B511959F .
Musino D, Genix A C, Chauveau E, Bizien T, Oberdisse J. Nanoscale , 2020 . 12 ( 6 ): 3907 - 3915 . DOI:10.1039/C9NR09395Hhttp://doi.org/10.1039/C9NR09395H .
Tatou M, Genix A C, Imaz A, Forcada J, Banc A, Schweins R, Grillo I, Oberdisse J. Macromolecules , 2011 . 44 ( 22 ): 9029 - 9039 . DOI:10.1021/ma2012893http://doi.org/10.1021/ma2012893 .
You W, Yu W, Zhou C X. Soft Matter , 2017 . 13 ( 22 ): 4088 - 4098.
Song Y H, Zeng L B, Zheng Q. Chinese J Polym Sci , 2017 . 35 ( 11 ): 1436 - 1446 . DOI:10.1007/s10118-017-1987-5http://doi.org/10.1007/s10118-017-1987-5 .
Chen L, Song L X, Li J, Chen P Z, Huang N D, Li L B. Macromol Mater Eng , 2016 . 301 ( 11 ): 1390 - 1401 . DOI:10.1002/mame.201600235http://doi.org/10.1002/mame.201600235 .
Bouty A, Petitjean L, Degrandcourt C, Gummel J, Kwasniewski P, Meneau F, Boue F, Couty M, Jestin J. Macromolecules , 2014 . 47 ( 15 ): 5365 - 5378 . DOI:10.1021/ma500582phttp://doi.org/10.1021/ma500582p .
Camenzind A, Schweizer T, Sztucki M, Pratsinis S E. Polymer , 2010 . 51 ( 8 ): 1796 - 1804 . DOI:10.1016/j.polymer.2010.02.030http://doi.org/10.1016/j.polymer.2010.02.030 .
Hassanabadi H M, Wilhelm M, Rodrigue D. Rheol Acta , 2014 . 53 ( 10-11 ): 869 - 882.
Cassagnau P. Polymer , 2003 . 44 ( 8 ): 2455 - 2462.
Zhang Q H, Rastogi S, Chen D J, Lippits D, Lemstra P J. Carbon , 2006 . 44 ( 4 ): 778 - 785.
Xu D H, Wang Z G, Douglas J F. Macromolecules , 2008 . 41 ( 3 ): 815 - 825.
Zhang Q H, Fang F, Zhao X, Li Y Z, Zhu M F, Chen D J. J Phys Chem B , 2008 . 112 ( 40 ): 12606 - 12611.
Kayatin M J, Davis V A. Macromolecules , 2009 . 42 ( 17 ): 6624 - 6632.
Lee J I, Yang S B, Jung H T. Macromolecules , 2009 . 42 ( 21 ): 8328 - 8334.
Huegun A, Fernandez M, Munoz M E, Santamaria A. Compos Sci Technol , 2012 . 72 ( 13 ): 1602 - 1607.
Mahi H, Rodrigue D. Rheol Acta , 2012 . 51 ( 2 ): 127 - 142.
Ghanbari A, Heuzey M C, Carreau P J, Minh-Tan T T. Rheol Acta , 2013 . 52 ( 1 ): 59 - 74.
Lim H T, Ahn K H, Hong J S, Hyun K. J Rheol , 2013 . 57 ( 3 ): 767 - 789.
Penu C, Hu G H, Fernandez A, Marchal P, Choplin L. Polym Eng Sci , 2012 . 52 ( 10 ): 2173 - 2181.
Yuan L J, Wu D F, Zhang M, Zhou W D, Lin D P. Ind Eng Chem Res , 2011 . 50 ( 24 ): 14186 - 14192.
Le Strat D, Dalmas F, Randriamahefa S, Jestin J, Wintgens V. Polymer , 2013 . 54 ( 5 ): 1466 - 1479.
Chabert E, Bornert M, Bourgeat-Lami E, Cavaille J Y, Dendievel R, Gauthier C, Putaux U, Zaoui A. Mater Sci Eng A-Struct Mater Prop Microstruct Process , 2004 . 381 ( 1-2 ): 320 - 330.
Park S J, Kim S, Yong D, Choe Y, Bang J, Kim J U. Soft Matter , 2018 . 14 ( 6 ): 1026 - 1042.
Wang Z X, Zheng Z J, Liu J, Wu Y P, Zhang L Q. Polymers , 2016 . 8 ( 9 ): 270 .
Chao H K, Riggleman R A. Polymer , 2013 . 54 ( 19 ): 5222 - 5229.
Shen J X, Liu J, Li H D, Gao Y Y, Li X L, Wu Y P, Zhang L Q. Phys Chem Chem Phys , 2015 . 17 ( 11 ): 7196 - 7207.
0
浏览量
92
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构