浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
3.威高集团有限公司医用植入器械国家工程实验室 威海 264210
[ "栾世方,男,1976年生. 2000、2003年在四川大学分别获工学学士、工学硕士学位,2006年在中国科学院长春应用化学研究所获理学博士学位. 2007~2009年在威高集团进行博士后研究,2009年至今任中国科学院长春应用化学研究所高分子物理与化学国家重点实验室助研、副研和研究员,主要从事高性能高分子材料与应用转化研究工作. 主持国家重点研发计划、国家自然科学基金等项目10余项. 获国家技术发明二等奖、中国科学院院地合作优秀产业化团队奖、中国产学研合作创新奖. 现任医用植入器械国家工程实验室主任、中国生物材料学会常务理事" ]
纸质出版日期:2021-3-3,
网络出版日期:2020-11-24,
收稿日期:2020-8-25,
修回日期:2020-10-1,
扫 描 看 全 文
孙立伟, 宋凌杰, 栾世方, 殷敬华. 生物医用材料表面光引发活性接枝聚合研究新进展[J]. 高分子学报, 2021,52(3):223-234.
Li-wei Sun, Ling-jie Song, Shi-fang Luan, Jing-hua Yin. Progress in Photo-initiated Living Graft Polymerization of Biomaterials[J]. Acta Polymerica Sinica, 2021,52(3):223-234.
孙立伟, 宋凌杰, 栾世方, 殷敬华. 生物医用材料表面光引发活性接枝聚合研究新进展[J]. 高分子学报, 2021,52(3):223-234. DOI: 10.11777/j.issn1000-3304.2020.20198.
Li-wei Sun, Ling-jie Song, Shi-fang Luan, Jing-hua Yin. Progress in Photo-initiated Living Graft Polymerization of Biomaterials[J]. Acta Polymerica Sinica, 2021,52(3):223-234. DOI: 10.11777/j.issn1000-3304.2020.20198.
表面接枝聚合改性已经成为提升生物医用材料性能的最重要方法之一. 参比其他活性接枝聚合方法,光引发活性接枝聚合因其独特的优势已被越来越广泛地应用于生物医用材料表面改性. 根据光引发剂的类型,目前应用最多的光引发活性接枝聚合的引发体系主要有3种:光引发-转移-终止剂介导的聚合引发体系、二苯甲酮及其衍生物引发体系、硫杂蒽酮类引发体系. 本文首先简要介绍了上述3种光引发活性接枝聚合体系的发展历程、接枝机理以及特点. 同时结合本课题组相关研究工作,重点论述了光引发接枝聚合技术在3个不同生物医用领域的主要应用:(1)抗菌表面,利用光活性接枝的特点构建层状功能高分子刷,实现表面抗菌功能的阶段性需求. (2)免疫检测表面,使用光活性接枝方法构建层状功能高分子刷,解决检测灵敏度低以及蛋白干扰问题. (3)生物活性分子表面固定,利用可见光活性接枝聚合体系,实现酶在表面的固定化使用以及细胞表面修饰以提高细胞稳定性. 最后展望了生物医用材料表面光引发活性接枝聚合研究的发展趋势.
Surface modification of biomaterials
via
graft polymerization has become one of the most important methods to enhance their virtual bio-functionalities. Compared with other living graft polymerization methods
photo-initiated living graft polymerization exhibits superior merits and has been more and more widely used in surface modification of biomaterials. The photoinitiators used for photo-initiated living graft polymerization are mainly categorized into three types: photoiniferter-mediated polymerization (PIMP)
benzophenone and its derivatives
and thioxanthones. In this review
the development
graft mechanism and characteristics of the three photo-initiated living graft polymerization systems are briefly introduced. Meanwhile
the applications of photo-initiated graft polymerization in three different biomedical fields are mainly reviewed. i) Antibacterial surface: layered functional polymer brushes constructed by photo-initiated living graft polymerization have been developed to achieve antibacterial function on demand; ii) Immunoassay: layered functional polymer brushes can solve the problem of low detection sensitivity and protein interference; iii) Bioactive molecules fixed on the surface: visible light living graft polymerization system is used to realize the immobilized enzyme on the surface as well as the cell surface modification to improve the stability. Finally
their recent advances in the biomedical fields and the future opportunities and challenges are highlighted.
光活性接枝聚合表面改性抗菌免疫检测生物活性分子
Photo-initiated living graft polymerizationSurface modificationAntibacterialImmunoassayBioactive molecular
Badv M, Bayat F, Weitz J I, Didar T F . Biomaterials , 2020 . 258 120291 DOI:10.1016/j.biomaterials.2020.120291http://doi.org/10.1016/j.biomaterials.2020.120291 .
Amin Y S, Castenmiller S M, Strijp J A G, Croes M . Adv Mater , 2020 . 2002962 DOI:10.1002/adma.202002962http://doi.org/10.1002/adma.202002962 .
Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot J E . Chem Rev , 2014 . 114 ( 21 ): 10976 - 11026 . DOI:10.1021/cr500252uhttp://doi.org/10.1021/cr500252u .
Li Dan(李丹), Wu Jinxian(吴静娴), Liu Xiaoli(刘小莉), Luan Yafei(栾亚菲), Chen Hong(陈红) . Acta Polymerica Sinica(高分子学报) , 2016 . ( 7 ): 850 - 859 . DOI:10.11777/j.issn1000-3304.2016.5329http://doi.org/10.11777/j.issn1000-3304.2016.5329 .
Galvin C J, Genzer J . Prog Polym Sci , 2012 . 37 ( 7 ): 871 - 906 . DOI:10.1016/j.progpolymsci.2011.12.001http://doi.org/10.1016/j.progpolymsci.2011.12.001 .
Anastasaki A, Nikolaou V, Nurumbetov G, Wilson P, Kempe K, Quinn J F, Davis T P . Chem Rev , 2016 . 116 ( 3 ): 835 - 877 . DOI:10.1021/acs.chemrev.5b00191http://doi.org/10.1021/acs.chemrev.5b00191 .
Braunecker W A, Matyjaszewski K . Prog Polym Sci , 2007 . 32 ( 1 ): 93 - 146 . DOI:10.1016/j.progpolymsci.2006.11.002http://doi.org/10.1016/j.progpolymsci.2006.11.002 .
Yamago S . Chem Rev , 2009 . 109 ( 11 ): 5051 - 5068 . DOI:10.1021/cr9001269http://doi.org/10.1021/cr9001269 .
Zoppe J O, Ataman N C, Mocny P, Wang J, Moraes J, Klok H A . Chem Rev , 2017 . 117 ( 3 ): 1105 - 1318 . DOI:10.1021/acs.chemrev.6b00314http://doi.org/10.1021/acs.chemrev.6b00314 .
Chen W, Cordero R, Tran H, Ober C K . Macromolecules , 2017 . 50 ( 11 ): 4089 - 4113 . DOI:10.1021/acs.macromol.7b00450http://doi.org/10.1021/acs.macromol.7b00450 .
Deng J, Wang L, Liu L, Yang W . Prog Polym Sci , 2009 . 34 ( 2 ): 156 - 193 . DOI:10.1016/j.progpolymsci.2008.06.002http://doi.org/10.1016/j.progpolymsci.2008.06.002 .
Shao J, Huang Y, Fan Q . Polym Chem , 2014 . 5 ( 14 ): 4195 - 4210 . DOI:10.1039/C4PY00072Bhttp://doi.org/10.1039/C4PY00072B .
Chen M, Zhong M, Johnson J A . Chem Rev , 2016 . 116 ( 17 ): 10167 - 10211 . DOI:10.1021/acs.chemrev.5b00671http://doi.org/10.1021/acs.chemrev.5b00671 .
Otsu T, Yoshida M, Tazaki T . Makromol Chem, Rapid Commun , 1982 . 3 ( 2 ): 133 - 140 . DOI:10.1002/marc.1982.030030209http://doi.org/10.1002/marc.1982.030030209 .
Yang W, Rånby B . Macromolecules , 1996 . 29 ( 9 ): 3308 - 3310 . DOI:10.1021/ma9515543http://doi.org/10.1021/ma9515543 .
Bai H, Huang Z, Yang W . J Polym Sci Part A: Polym Chem , 2009 . 47 ( 24 ): 6852 - 6862 . DOI:10.1002/pola.23724http://doi.org/10.1002/pola.23724 .
Tasdelen M A, Demirel A L, Yagci Y . Eur Polym J , 2007 . 43 ( 10 ): 4423 - 4430 . DOI:10.1016/j.eurpolymj.2007.05.042http://doi.org/10.1016/j.eurpolymj.2007.05.042 .
Tunc D, Yagci Y . Polym Chem , 2011 . 2 2557 - 2563 . DOI:10.1039/c1py00269dhttp://doi.org/10.1039/c1py00269d .
Jiang X, Luo J, Yin J . Polymer , 2009 . 50 ( 1 ): 37 - 41 . DOI:10.1016/j.polymer.2008.10.038http://doi.org/10.1016/j.polymer.2008.10.038 .
Boer B, Simon H K, Werts M P L, Vegte E W, Hadziioannou G . Macromolecules , 2000 . 33 ( 2 ): 349 - 356 . DOI:10.1021/ma9910944http://doi.org/10.1021/ma9910944 .
Rahane S B, Kilbey S M, Metters A T . Macromolecules , 2005 . 38 ( 20 ): 8202 - 8210 . DOI:10.1021/ma0509661http://doi.org/10.1021/ma0509661 .
Rahane S B, Kilbey S M, Metters A T . Macromolecules , 2008 . 41 ( 24 ): 9612 - 9618 . DOI:10.1021/ma702516whttp://doi.org/10.1021/ma702516w .
Zhang S, Liu W, Dong Y, Wei T, Wu Z, Chen H . Langmuir , 2019 . 35 ( 9 ): 3470 - 3478 . DOI:10.1021/acs.langmuir.8b04323http://doi.org/10.1021/acs.langmuir.8b04323 .
Sui X, Zapotoczny S, Benetti E M, Memesa M, Hempenius M A, Vancso G J . Polym Chem , 2011 . 2 879 - 884 . DOI:10.1039/c0py00393jhttp://doi.org/10.1039/c0py00393j .
Zhang S, Liu W, Wu Z, Chen H . J Mater Chem B , 2020 . 8 ( 26 ): 5602 - 5605 . DOI:10.1039/D0TB01222Jhttp://doi.org/10.1039/D0TB01222J .
Benetti E M, Zapotoczny S, Vancso G J . Adv Mater , 2007 . 19 ( 2 ): 268 - 271 . DOI:10.1002/adma.200601554http://doi.org/10.1002/adma.200601554 .
Gromadzki D, Filippov S, Netopilík M, Makuška R, Jigounov A, Pleštil J, Horský J . Eur Polym J , 2009 . 45 ( 6 ): 1748 - 1758 . DOI:10.1016/j.eurpolymj.2009.02.022http://doi.org/10.1016/j.eurpolymj.2009.02.022 .
Ma H, Davis R H, Bowman C N . Polymer , 2001 . 42 ( 20 ): 8333 - 8338 . DOI:10.1016/S0032-3861(01)00328-7http://doi.org/10.1016/S0032-3861(01)00328-7 .
He D, Ulbricht M . J Mater Chem , 2006 . 16 1860 - 1868 . DOI:10.1039/b601546hhttp://doi.org/10.1039/b601546h .
Zhou T, Zhu Y, Li X, Liu X, Yeung K W K, Wu S, Wang X . Prog Polym Sci , 2016 . 83 191 - 235.
Xi Gaiqing(席改卿), Yin Meizhen(尹梅贞), Yang Wantai(杨万泰) . Acta Polymerica Sinica(高分子学报) , 2012 . ( 7 ): 784 - 788 . DOI:10.3724/SP.J.1105.2012.12032http://doi.org/10.3724/SP.J.1105.2012.12032 .
Yagci Y, Jockusch S, Turro N J . Macromolecules , 2010 . 43 ( 15 ): 6245 - 6260 . DOI:10.1021/ma1007545http://doi.org/10.1021/ma1007545 .
Balta D K, Temel G, Goksu G, Ocal N, Arsu N . Macromolecules , 2011 . 45 ( 1 ): 119 - 125.
Wang Y, Yang W . Langmuir , 2004 . 20 ( 15 ): 6225 - 6231 . DOI:10.1021/la0493924http://doi.org/10.1021/la0493924 .
Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H A . Chem Rev , 2009 . 109 ( 11 ): 5437 - 5527 . DOI:10.1021/cr900045ahttp://doi.org/10.1021/cr900045a .
Yu L, Hou Y, Cheng C, Schlaich C, Noeske P L M, Wei Q, Haag R . ACS Appl Mater Interfaces , 2017 . 9 ( 51 ): 44281 - 44292 . DOI:10.1021/acsami.7b13515http://doi.org/10.1021/acsami.7b13515 .
Li Xiang(李翔), Wang Jinghong(王境鸿), Tang Zengchao(唐增超), Chen Rui(陈蕊), Fang Jingyi(方菁嶷), Li Dan(李丹), Chen Hong(陈红) . Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 11 ): 1248 - 1256 . DOI:10.11777/j.issn1000-3304.2020.20079http://doi.org/10.11777/j.issn1000-3304.2020.20079 .
Zhao C, He B, Wang G, Ma Y, Yang W . Macromol Rapid Commun , 2016 . 37 ( 19 ): 1611 - 1617 . DOI:10.1002/marc.201600307http://doi.org/10.1002/marc.201600307 .
Li Bin(李斌), Yu Bo(于波), Zhou Feng(周峰) . Acta Polymerica Sinica(高分子学报) , 2016 . ( 10 ): 1312 - 1329 . DOI:10.11777/j.issn1000-3304.2016.16198http://doi.org/10.11777/j.issn1000-3304.2016.16198 .
Ding X, Duan S, Ding X, Liu R, Xu F J . Adv Funct Mater , 2018 . 28 1802140 DOI:10.1002/adfm.201802140http://doi.org/10.1002/adfm.201802140 .
Arciola C R, Campoccia D, Montanaro L . Nat Rev Microbiol , 2018 . 16 ( 7 ): 397 - 409 . DOI:10.1038/s41579-018-0019-yhttp://doi.org/10.1038/s41579-018-0019-y .
Cloutier M, Mantovani D, Rosei F . Trends Biotechnol , 2015 . 33 ( 11 ): 637 - 652 . DOI:10.1016/j.tibtech.2015.09.002http://doi.org/10.1016/j.tibtech.2015.09.002 .
Campoccia D, Montanaro L, Arciola C R . Biomaterials , 2013 . 34 ( 34 ): 8533 - 8554 . DOI:10.1016/j.biomaterials.2013.07.089http://doi.org/10.1016/j.biomaterials.2013.07.089 .
Wei T, Yu Q, Chen H . Adv Healthc Mater , 2019 . 8 ( 3 ): 1801381 DOI:10.1002/adhm.201801381http://doi.org/10.1002/adhm.201801381 .
Dhende V P, Samanta S, Jones D M, Hardin I R, Locklin J . ACS Appl Mater Interfaces , 2011 . 3 ( 8 ): 2830 - 2837 . DOI:10.1021/am200324fhttp://doi.org/10.1021/am200324f .
Porosa L, Caschera A, Bedard J, Mocella A, Ronan E, Lough A J, Wolfaardt G . ACS Appl Mater Interfaces , 2017 . 9 ( 33 ): 27491 - 27503 . DOI:10.1021/acsami.7b07363http://doi.org/10.1021/acsami.7b07363 .
Pant J, Gao J, Goudie M J, Hopkins S P, Locklin J, Handa H . Acta Biomater , 2017 . 58 421 - 431 . DOI:10.1016/j.actbio.2017.05.061http://doi.org/10.1016/j.actbio.2017.05.061 .
Lin X, Fukazawa K, Ishihara K . ACS Appl Mater Interfaces , 2015 . 7 ( 31 ): 17489 - 17498 . DOI:10.1021/acsami.5b05193http://doi.org/10.1021/acsami.5b05193 .
Ren L, Chen J, Lu Q, Han J, Wu H . J Membr Sci , 2021 . 617 118658 .
Yu Qian(于谦), Chen Hong(陈红) . Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 4 ): 319 - 325 . DOI:10.11777/j.issn1000-3304.2020.20031http://doi.org/10.11777/j.issn1000-3304.2020.20031 .
Yu Q, Wu Z, Chen H . Acta Biomater , 2015 . 16 1 - 13 . DOI:10.1016/j.actbio.2015.01.018http://doi.org/10.1016/j.actbio.2015.01.018 .
Yuan P, Qiu X, Wang X, Tian R, Wang L, Bai Y, Liu S . Adv Healthc Mater , 2019 . 8 ( 8 ): 2192 - 2640.
Lv J, Jin J, Chen J, Cai B, Jiang W . ACS Appl Mater Interfaces , 2019 . 11 ( 28 ): 25556 - 25568 . DOI:10.1021/acsami.9b06281http://doi.org/10.1021/acsami.9b06281 .
Yan S, Song L, Li Z, Luan S, Shi H, Xin Z, Li S . J Biomater Sci Polym Ed , 2016 . 27 ( 14 ): 1397 - 1412 . DOI:10.1080/09205063.2016.1207491http://doi.org/10.1080/09205063.2016.1207491 .
Yan S, Luan S, Shi H, Xu X, Zhang J, Yuan S, Yang Y . Biomacromolecules , 2016 . 17 ( 5 ): 1696 - 1704 . DOI:10.1021/acs.biomac.6b00115http://doi.org/10.1021/acs.biomac.6b00115 .
Wang X, Yan S, Song L, Shi H, Yang H, Luan S, Huang Y . ACS Appl Mater Interfaces , 2017 . 9 ( 46 ): 40930 - 40939 . DOI:10.1021/acsami.7b09968http://doi.org/10.1021/acsami.7b09968 .
Yan S, Shi H, Song L, Wang X, Liu L, Luan S, Yang Y . ACS Appl Mater Interfaces , 2016 . 8 ( 37 ): 24471 - 24481 . DOI:10.1021/acsami.6b08436http://doi.org/10.1021/acsami.6b08436 .
Liu T, Yan S, Zhou R, Zhang X, Yang H, Yan Q, Yang R, Luan S . ACS Appl Mater Interfaces , 2020 . 12 ( 38 ): 42576 - 42585 . DOI:10.1021/acsami.0c13413http://doi.org/10.1021/acsami.0c13413 .
Fu Y, Zhang L, Huang L, Xiao S, Chen F, Fan P, Zhong M . Appl Surf Sci , 2018 . 450 130 - 137 . DOI:10.1016/j.apsusc.2018.04.112http://doi.org/10.1016/j.apsusc.2018.04.112 .
Wilson B, Liotta L A, Petricoiniii E . Mol Cell Proteomics , 2013 . 12 ( 9 ): 2522 - 2535 . DOI:10.1074/mcp.M112.025346http://doi.org/10.1074/mcp.M112.025346 .
Song L, Zhao J, Luan S, Ma J, Liu J, Xu X, Yin J . ACS Appl Mater Interfaces , 2013 . 5 ( 24 ): 13207 - 13215 . DOI:10.1021/am404206vhttp://doi.org/10.1021/am404206v .
Ma J, Song L, Shi H, Yang H, Ye W, Guo X, Luan S . J Mater Chem B , 2018 . 6 ( 22 ): 3762 - 3769 . DOI:10.1039/C8TB00846Ahttp://doi.org/10.1039/C8TB00846A .
Cokbaglan L, Arsu N, Yagci Y, Jockusch S, Turro N J . Macromolecules , 2003 . 36 ( 8 ): 2649 - 2653 . DOI:10.1021/ma0214613http://doi.org/10.1021/ma0214613 .
Huang C, Brault N D, Li Y, Yu Q, Jiang S . Adv Mater , 2012 . 24 ( 14 ): 1834 - 1837 . DOI:10.1002/adma.201104849http://doi.org/10.1002/adma.201104849 .
Huang C, Li Y, Jiang S . Anal Chem , 2012 . 84 ( 7 ): 3440 - 3445 . DOI:10.1021/ac3003769http://doi.org/10.1021/ac3003769 .
Ma J, Luan S, Song L, Jin J, Yuan S, Yan S, Yang H . ACS Appl Mater Interfaces , 2014 . 6 ( 3 ): 1971 - 1978 . DOI:10.1021/am405017hhttp://doi.org/10.1021/am405017h .
Lin Z, Ma Y, Zhao C, Chen R, Zhu X, Zhang L, Yan X . Lab Chip , 2014 . 14 ( 14 ): 2505 - 2514 . DOI:10.1039/C4LC00223Ghttp://doi.org/10.1039/C4LC00223G .
Zhang L, Ma Y, Zhao C, He B, Zhu X, Yang W . Ind Eng Chem Res , 2016 . 55 ( 22 ): 6354 - 6364.
Wang Y, Qi Y, Chen C, Zhao C, Ma Y, Yang W . ACS Appl Mater Interfaces , 2019 . 11 ( 47 ): 44913 - 44921 . DOI:10.1021/acsami.9b16274http://doi.org/10.1021/acsami.9b16274 .
Zhu X, Ma Y, Zhao C, Lin Z, Zhang L, Chen R, Yang W . Langmuir , 2014 . 30 ( 50 ): 15229 - 15237 . DOI:10.1021/la5035273http://doi.org/10.1021/la5035273 .
Zhu X, He B, Zhao C, Fan R, Zhang L, Wang G, Ma Y . Sci Rep , 2016 . 6 23437 DOI:10.1038/srep23437http://doi.org/10.1038/srep23437 .
Zhu X, He B, Zhao C, Ma Y, Yang W . Langmuir , 2017 . 33 ( 22 ): 5577 - 5584 . DOI:10.1021/acs.langmuir.7b00594http://doi.org/10.1021/acs.langmuir.7b00594 .
Li C, Glidle A, Yuan X, Hu Z, Pulleine E, Cooper J, Yang W . Biomacromolecules , 2013 . 14 ( 5 ): 1278 - 1286 . DOI:10.1021/bm4000597http://doi.org/10.1021/bm4000597 .
He B, Zhu X, Zhao C, Wang G, Ma Y, Yang W . Macromol Rapid Commun , 2018 . 39 ( 20 ): 1800212 DOI:10.1002/marc.201800212http://doi.org/10.1002/marc.201800212 .
Sheldon R A, Pelt S . Chem Soc Rev , 2013 . 42 ( 15 ): 6223 - 6235 . DOI:10.1039/C3CS60075Khttp://doi.org/10.1039/C3CS60075K .
Gdor E, Shemesh S, Magdassi S, Mandler D . ACS Appl Mater Interfaces , 2015 . 7 ( 32 ): 17985 - 17992 . DOI:10.1021/acsami.5b04726http://doi.org/10.1021/acsami.5b04726 .
Liang H, Jiang S, Yuan Q, Li G, Wang F, Zhang Z, Liu J . Nanoscale , 2016 . 8 ( 11 ): 6071 - 6078 . DOI:10.1039/C5NR08734Ahttp://doi.org/10.1039/C5NR08734A .
Wu X, Ge J, Yang C, Hou M, Liu Z . Chem Commun , 2015 . 51 ( 69 ): 13408 - 13411 . DOI:10.1039/C5CC05136Chttp://doi.org/10.1039/C5CC05136C .
Zhang K, Shao G, Yang B, Zhao C, Ma Y, Yang W . Chem Commun , 2020 . 56 ( 50 ): 6862 - 6865 . DOI:10.1039/D0CC02225Jhttp://doi.org/10.1039/D0CC02225J .
Drachuk I, Gupta M K, Tsukruk V V . Adv Funct Mater , 2013 . 23 ( 36 ): 4437 - 4453 . DOI:10.1002/adfm.201300038http://doi.org/10.1002/adfm.201300038 .
Matsusaki M, Kadowaki K, Nakahara Y, Akashi M . Angew Chem Int Ed , 2007 . 119 ( 25 ): 4773 - 4776 . DOI:10.1002/ange.200701089http://doi.org/10.1002/ange.200701089 .
Wang G, Zhang K, Wang Y, Zhao C, He B, Ma Y, Yang W . Chem Commun , 2018 . 54 ( 37 ): 4677 - 4680 . DOI:10.1039/C8CC01311Jhttp://doi.org/10.1039/C8CC01311J .
0
浏览量
88
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构