浏览全部资源
扫码关注微信
中国石化北京化工研究院 北京 100013
E-mail: qiaojl.bjhy@sinopec.com Jin-liang Qiao, E-mail: qiaojl.bjhy@sinopec.com
纸质出版日期:2021-3-3,
网络出版日期:2020-10-27,
收稿日期:2020-9-17,
修回日期:2020-10-12,
扫 描 看 全 文
胡晨曦, 张晓红, 乔金樑. 水热法制备非共轭聚集诱导发光聚合物及其在Fe3+检测中的应用[J]. 高分子学报, 2021,52(3):281-286.
Chen-xi Hu, Xiao-hong Zhang, Jin-liang Qiao. Non-conjugated AIE Polymers Prepared by Hydrothermal Reaction and Its Application in Fe3+ Detection[J]. Acta Polymerica Sinica, 2021,52(3):281-286.
胡晨曦, 张晓红, 乔金樑. 水热法制备非共轭聚集诱导发光聚合物及其在Fe3+检测中的应用[J]. 高分子学报, 2021,52(3):281-286. DOI: 10.11777/j.issn1000-3304.2020.20215.
Chen-xi Hu, Xiao-hong Zhang, Jin-liang Qiao. Non-conjugated AIE Polymers Prepared by Hydrothermal Reaction and Its Application in Fe3+ Detection[J]. Acta Polymerica Sinica, 2021,52(3):281-286. DOI: 10.11777/j.issn1000-3304.2020.20215.
以“自稳定沉淀聚合”制备的聚马来酸酐-醋酸乙烯酯线性交替共聚物(PMV)为原料,利用水热法制得3种新型非共轭聚集诱导发光(AIE)聚合物. 通过荧光光谱、紫外-可见光光谱、傅里叶变换红外光谱(FTIR)、X射线光电子能谱分析(XPS)等表征方法,研究了3种聚合物的荧光和结构特性,并考察了其在Fe
3+
检测的应用. 实验结果表明:3种PMV衍生物均具有AIE性质,随着水热时间的延长,聚合物的发光颜色从蓝色红移至黄色,且水热1 h所得产物固体的绝对量子产率最高,可达17.05%;所得非共轭AIE聚合物可用于Fe
3+
检测,当Fe
3+
浓度为5~200 μmol/L时,猝灭效率与Fe
3+
浓度符合线性关系,调整确定系数为0.9922,最低检测限可低至1.22 μmol/L.
In recent years
non-conjugated aggregation-induced emission (AIE) polymers without traditional
$${\text{π}}$$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=13590955&type=
-aromatic chromophores have attracted much attention. Although there have been many relevant studies focused on oxygen-
nitrogen-
and heteroatom-containing systems
there is still a lack of researches on those polymers with only oxygen groups. In this study
three novel non-conjugated AIE polymers were prepared with hydrothermal method
in which the poly(maleic anhydride-alt-vinyl acetate) (PMV) prepared by “self-stable precipitation polymerization” is regarded as the raw material. The fluorescence and structural properties of these three polymers and their applications in Fe
3+
detection were investigated by using fluorescence spectroscopy
UV-Vis spectroscopy
FTIR
XPS and other characterization methods. It is found that all PMV derivatives have typical AIE characteristcs
and their luminious color is shifted from blue to yellow with the increase of hydrothermal time
in which the maximum emission peaks of these three polymers were 488
527 and 608 nm
respectively. The highest absolute quantum yield of 17.05% is obtained under the condition that the hydrothermal time is 1 h. Structural characterizations exhibit that none of the three polymers had conjugated groups
and the fluorescent mechanism may be ascribed to the intra- and inter-molecular interaction of oxygen-containing groups caused by hydrothermal reaction. Furthermore
the obtained non-conjugated AIE polymers can be effectively used for Fe
3+
detection. Particularly
when the Fe
3+
concentration is 5−200 μmol/L
there is a linear relationship between the quenching efficiency and the Fe
3+
concentration
which could be conformed to Stern-Volmer equation. In this case
the adjustment coefficient of determination is 0.9922
and the limit of detect can be as low as 1.22 μmol/L. This study provided a new strategy to prepare non-conjugated AIE polymers
and further enriched the AIE family.
聚集诱导发光非共轭聚合物水热法离子检测
Aggregation-induced emissionNon-conjugated polymerHydrothermal reactionIon detection
Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z . Chem Commun , 2001 . 18 1740 - 1741.
Hu R, Kang Y, Tang B Z . Polym J , 2016 . 48 ( 4 ): 359 - 370 . DOI:10.1038/pj.2016.1http://doi.org/10.1038/pj.2016.1 .
Qiu Z, Liu X, Lam J W Y, Tang B Z . Macromol Rapid Commun , 2019 . 40 1800568 DOI:10.1002/marc.201800568http://doi.org/10.1002/marc.201800568 .
Hu Rong(胡蓉), Xin Dehua(辛德华), Qin Anjun(秦安军), Tang Benzhong(唐本忠) . Acta Polymerica Sinica(高分子学报) , 2018 . ( 2 ): 132 - 144 . DOI:10.11777/j.issn1000-3304.2018.17280http://doi.org/10.11777/j.issn1000-3304.2018.17280 .
Yuan W, Zhang Y . J Polym Sci, Part A: Polym Chem , 2017 . 55 ( 4 ): 560 - 574 . DOI:10.1002/pola.28420http://doi.org/10.1002/pola.28420 .
Yuan Luyao(原璐瑶), Yan Hongxia(颜红侠), Bai Lihua(白利华), Niu Song(牛松), Du Yuqun(杜玉群), Huang Wei(黄为) . Polymer Bulletin(高分子通报) , 2018 . ( 3 ): 24 - 30.
Dong Xiaojing(董晓晶), Cao Hongyan(曹红岩), Jiang Xubao(姜绪宝), Kong Xiangzheng(孔祥正), Li Shusheng(李树生) . Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 12 ): 1314 - 1321 . DOI:10.11777/j.issn1000-3304.2019.19106http://doi.org/10.11777/j.issn1000-3304.2019.19106 .
Ye R, Liu Y, Zhang H, Su H, Zhang Y, Xu L, Hu R, Kwok R T, Wong K S, Lam J W, Goddard W A, Tang B Z . Polym Chem , 2017 . 8 ( 10 ): 1722 - 1727 . DOI:10.1039/C7PY00154Ahttp://doi.org/10.1039/C7PY00154A .
Dou X, Zhou Q, Chen X, Tan Y, He X, Lu P, Sui K, Tang B Z, Zhang Y, Yuan W Z . Biomacromolecules , 2018 . 19 ( 6 ): 2014 - 2022 . DOI:10.1021/acs.biomac.8b00123http://doi.org/10.1021/acs.biomac.8b00123 .
Du L L, Jiang B L, Chen X H, Wang Y Z, Zou L M, Liu Y L, Gong Y Y, Wei C, Yuan W Z . Chinese J Polym Sci , 2019 . 37 ( 4 ): 409 - 415 . DOI:10.1007/s10118-019-2215-2http://doi.org/10.1007/s10118-019-2215-2 .
Chen X, Luo W, Ma H, Peng Q, Yuan W Z, Zhang Y . Sci China Chem , 2018 . 61 ( 3 ): 351 - 359 . DOI:10.1007/s11426-017-9114-4http://doi.org/10.1007/s11426-017-9114-4 .
Zhou Q, Cao B, Zhu C, Xu S, Gong Y, Yuan W Z, Zhang Y . Small , 2016 . 12 ( 47 ): 6586 - 6592 . DOI:10.1002/smll.201601545http://doi.org/10.1002/smll.201601545 .
Du Y, Yan H, Huang W, Chai F, Niu S . ACS Sustain Chem Eng , 2017 . 5 ( 7 ): 6139 - 6147 . DOI:10.1021/acssuschemeng.7b01019http://doi.org/10.1021/acssuschemeng.7b01019 .
Zhao E, Lam J W Y, Meng L, Hong Y, Deng H, Bai G, Huang X, Hao J, Tang B Z . Macromolecules , 2015 . 48 ( 1 ): 64 - 71 . DOI:10.1021/ma502160whttp://doi.org/10.1021/ma502160w .
Xing C-M, Yang W-T . Macromol Rapid Commun , 2004 . 25 ( 17 ): 1568 - 1574 . DOI:10.1002/marc.200400230http://doi.org/10.1002/marc.200400230 .
Guo Z, Ru Y, Song W, Liu Z, Zhang X, Qiao J . Macromol Rapid Commun , 2017 . 38 ( 14 ): 1700099 DOI:10.1002/marc.201700099http://doi.org/10.1002/marc.201700099 .
Hu C, Guo Z, Ru Y, Song W, Liu Z, Zhang X, Qiao J . Macromol Rapid Commun , 2018 . 39 ( 10 ): 1800035 DOI:10.1002/marc.201800035http://doi.org/10.1002/marc.201800035 .
Hu C, Ru Y, Guo Z, Liu Z, Song J, Song W, Zhang X, Qiao J . J Mater Chem C , 2019 . 7 ( 2 ): 387 - 393 . DOI:10.1039/C8TC05197Fhttp://doi.org/10.1039/C8TC05197F .
Zhou X, Luo W, Nie H, Xu L, Hu R, Zhao Z, Qin A, Tang B Z . J Mater Chem C , 2017 . 5 ( 19 ): 4775 - 4779 . DOI:10.1039/C7TC00868Fhttp://doi.org/10.1039/C7TC00868F .
Shang C, Wei N, Zhuo H, Shao Y, Zhang Q, Zhang Z, Wang H . J Mater Chem C , 2017 . 5 ( 32 ): 8082 - 8090 . DOI:10.1039/C7TC02381Bhttp://doi.org/10.1039/C7TC02381B .
Huang W, Yan H, Niu S, Du Y, Yuan L . J Polym Sci, Part A: Polym Chem , 2017 . 55 ( 22 ): 3690 - 3696 . DOI:10.1002/pola.28754http://doi.org/10.1002/pola.28754 .
Yoon K J, Woo J H, Seo Y S . Fibers Polym , 2003 . 4 ( 4 ): 182 - 187 . DOI:10.1007/BF02908276http://doi.org/10.1007/BF02908276 .
Sunel V, Popa M, Stoican A D, Popa A A, Uglea C V . Mater Plast , 2008 . 45 ( 2 ): 149 - 153.
Mei J, Leung N L, Kwok R T, Lam J W, Tang B Z . Chem Rev , 2015 . 115 ( 21 ): 11718 - 11940 . DOI:10.1021/acs.chemrev.5b00263http://doi.org/10.1021/acs.chemrev.5b00263 .
Wang Y, Bin X, Chen X, Zheng S, Zhang Y, Yuan W Z . Macromol Rapid Commun , 2018 . 39 1800528 DOI:10.1002/marc.201800528http://doi.org/10.1002/marc.201800528 .
Yuan L, Yan H, Bai L, Bai T, Zhao Y, Wang L, Feng Y . Macromol Rapid Commun , 2019 . 40 1800658 DOI:10.1002/marc.201800658http://doi.org/10.1002/marc.201800658 .
0
浏览量
56
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构