浏览全部资源
扫码关注微信
1.太原理工大学新型碳材料研究院 晋中 030600
2.新材料界面科学与工程教育部重点实验室(太原理工大学) 太原 030024
3.中国科学院苏州纳米技术与纳米放生研究所 印刷电子研究中心 苏州 215123
4.太原理工大学轻纺工程学院 晋中 030600
E-mail: lpyan2014@sinano.ac.cn
E-mail: yyztyut@126.com
E-mail: cqma2011@sinano.ac.cn
纸质出版日期:2021-4-3,
网络出版日期:2020-11-19,
收稿日期:2020-9-21,
修回日期:2020-10-22,
扫 描 看 全 文
闫翎鹏, 赵文盛, 杨永珍, 王华, 刘旭光, 马昌期. 聚合物:富勒烯薄膜光伏电池的反常高温热稳定性研究[J]. 高分子学报, 2021,52(4):350-362.
Ling-peng Yan, Wen-sheng Zhao, Yong-zhen Yang, Hua Wang, Xu-guang Liu, Chang-qi Ma. Study on the Abnormal High Temperature Thermal Stability of Polymer:Fullerene Photovoltaic Cells[J]. Acta Polymerica Sinica, 2021,52(4):350-362.
闫翎鹏, 赵文盛, 杨永珍, 王华, 刘旭光, 马昌期. 聚合物:富勒烯薄膜光伏电池的反常高温热稳定性研究[J]. 高分子学报, 2021,52(4):350-362. DOI: 10.11777/j.issn1000-3304.2020.20220.
Ling-peng Yan, Wen-sheng Zhao, Yong-zhen Yang, Hua Wang, Xu-guang Liu, Chang-qi Ma. Study on the Abnormal High Temperature Thermal Stability of Polymer:Fullerene Photovoltaic Cells[J]. Acta Polymerica Sinica, 2021,52(4):350-362. DOI: 10.11777/j.issn1000-3304.2020.20220.
聚合物太阳能电池光电转换效率已接近商业化要求,但稳定性差却成为其实用化瓶颈因素. 高温暴晒是聚合物太阳能电池实用化必须面临的环境,因此提高聚合物太阳能电池的热稳定性至关重要. 本文以典型的Poly(3-hexylthiophene-2
5-diyl (P3HT):[6
6]-Phenyl-C
61
-butyric acid methyl ester (PC
61
BM)基聚合物太阳能电池为研究模型,考察其在不同加热温度下(50~110 °C)持续工作时的器件效率变化行为,结果发现电池在高温下表现出一种非常规的性能衰减再回升的行为,具体表现为高温下电池首先表现指数式急速衰减(20%~25%),随后发生反常的性能快速恢复至接近初始效率,之后电池保持超长的高温稳定性. 光学显微镜和激光光束诱导电流成像结果证明,顶电极覆盖可以有效抑制活性层中PC
61
BM的聚集结晶,因而电池的反常热诱导稳定性提升与PC
61
BM的大量聚集结晶无关. 活性层薄膜的紫外可见吸收光谱和器件外量子效率的表征结果证明,持续高温加热没有促进PC
61
BM二聚体的形成,反而有利于PC
61
BM二聚体的解离. 综合实验分析结果,推测PC
61
BM在光照下的快速二聚反应及其高温解离是导致电池表现出反常热稳定性提升行为的主要原因. 实验结果揭示了初期制备的聚合物太阳能电池实际处于一种亚稳态,对器件进行短暂的前期热退火有利于稳定活性层结构,消除亚稳态,有效提升器件稳定性. 本研究工作不仅对富勒烯基聚合物太阳能电池的热诱导反常稳定性提升机理机制给出了解释,而且提供了一种提高聚合物太阳能电池稳定性的新策略.
The power conversion efficiency of polymer solar cells (PSCs) is approaching commercial requirements
but its poor stability has become the next key challenge before the commercialization of PSCs. The high temperature working environment is what PSCs must endure in actual work
so it is necessary to improve the thermal stability of PSCs. Poly(3-hexylthiophene-2
5-diyl (P3HT):[6
6]-Phenyl-C
61
-butyric acid methyl ester (PC
61
BM)-based PSCs was used as a research model to investigate its degradation behavior at different annealing temperatures (50−110 °C). The results show that the PSCs exhibit an abnormal thermally induced stability enhancement behavior. During the high temperature aging process
the power conversion efficiency (PCE) of PSCs abruptly decay 20%−25% within the first 10 h
and then quickly recovered within 200 h
and finally remained stable for a long time (1000 h). Optical microscopy and laser beam induced current imaging characterizations prove that the top electrode covering can effectively inhibit the aggregation and crystallization of PC
61
BM in the active layer
so the abnormal aging behavior of the PSCs is not caused by the large amount of aggregation of PC
61
BM. Ultraviolet-visible absorption and external quantum efficiency characterizations prove that continuous high-temperature heating does not promote PC
61
BM dimerization
but facilitates the dissociation of PC
61
BM dimers. Based on all the above experimental results
it is speculated that the dimerization of PC
61
BM and the dissociation of its dimer at high temperature are the main reasons for the abnormal thermal stability enhancement of PSCs. This study also reveal that the newly prepared PSCs are actually in a metastable state
and a short-term thermal annealing of the device in the early stage is helpful to improve the stability of PSCs. This research work not only explains the thermally induced abnormal stability enhancement mechanism of fullerene-based PSCs
but also provides a new strategy to improve the stability of PSCs.
聚合物太阳能电池热稳定性衰减亚稳态富勒烯
Polymer solar cellThermal stabilityDegradationMetastable stateFullerene
Inganäs O . Adv Mater , 2018 . 30 ( 35 ): 1800388 DOI:10.1002/adma.201800388http://doi.org/10.1002/adma.201800388 .
Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L . Sci Bull , 2020 . 65 ( 4 ): 272 - 275 . DOI:10.1016/j.scib.2020.01.001http://doi.org/10.1016/j.scib.2020.01.001 .
Gevorgyan S A, Espinosa N, Ciammaruchi L, Roth B, Livi F, Tsopanidis S, Zufle S, Queiros S, Gregori A, Benatto G A D, Corazza M, Madsen M V, Hosel M, Beliatis M J, Larsen-Olsen T T, Pastorelli F, Castro A, Mingorance A, Lenzi V, Fluhr D, Roesch R, Ramos M M D, Savva A, Hoppe H, Marques L S A, Burgues I, Georgiou E, Serrano-Lujan L, Krebs F C . Adv Energy Mater , 2016 . 6 ( 22 ): 1600910 DOI:10.1002/aenm.201600910http://doi.org/10.1002/aenm.201600910 .
Zhao J B, Li Y K, Yang, G F, Jiang K, Lin H R, Ade H, Ma W, Yan H . Nat Energy , 2016 . 1 15027 DOI:10.1038/nenergy.2015.27http://doi.org/10.1038/nenergy.2015.27 .
Huang J, Carpenter J H, Li C Z, Yu J S, Ade H, Jen A K Y . Adv Mater , 2016 . 28 ( 5 ): 967 - 974 . DOI:10.1002/adma.201504014http://doi.org/10.1002/adma.201504014 .
Liu Y H, Zhao J B, Li Z K, Mu C, Ma W, Hu H W, Jiang K, Lin H R, Ade H, Yan H . Nat Commun , 2014 . 5 5293 DOI:10.1038/ncomms6293http://doi.org/10.1038/ncomms6293 .
Yan T, Song W, Huang J, Peng R, Huang L, Ge Z . Adv Mater , 2019 . 31 ( 39 ): 1902210 DOI:10.1002/adma.201902210http://doi.org/10.1002/adma.201902210 .
Lin Y, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X, Yarali E, Seitkhan A, Bakr O M, El-Labban A, Schwingenschlögl U, Tung V, McCulloch I, Laquai F, Anthopoulos T D . Adv Mater , 2019 . 31 ( 46 ): 1902965 DOI:10.1002/adma.201902965http://doi.org/10.1002/adma.201902965 .
Bertho S, Janssen G, Cleij T J, Conings B, Moons W, Gadisa A, D'Haen J, Goovaerts E, Lutsen L, Manca J, Vanderzande D . Sol Energ Mat Sol C , 2008 . 92 ( 7 ): 753 - 760 . DOI:10.1016/j.solmat.2008.01.006http://doi.org/10.1016/j.solmat.2008.01.006 .
Wang T, Pearson A J, Dunbar A D F, Staniec P A, Watters D C, Yi H N, Ryan A J, Jones R A L, Iraqi A, Lidzey D G . Adv Funct Mater , 2012 . 22 ( 7 ): 1399 - 1408 . DOI:10.1002/adfm.201102510http://doi.org/10.1002/adfm.201102510 .
Pearson A J, Wang T, Jones R A L, Lidzey D G, Staniec P A, Hopkinson P E, Donald A M . Macromolecules , 2012 . 45 ( 3 ): 1499 - 1508 . DOI:10.1021/ma202063khttp://doi.org/10.1021/ma202063k .
Lee H, Park C, Sin D H, Park J H, Cho K . Adv Mater , 2018 . 30 ( 34 ): 1800453 DOI:10.1002/adma.201800453http://doi.org/10.1002/adma.201800453 .
Park S, Son H J . J Mater Chem A , 2019 . 7 25830 - 25837 . DOI:10.1039/C9TA07417Ahttp://doi.org/10.1039/C9TA07417A .
Rafique S, Abdullah S M, Sulaiman K, Iwamoto M . Renew Sust Energ Rev , 2018 . 84 43 - 53 . DOI:10.1016/j.rser.2017.12.008http://doi.org/10.1016/j.rser.2017.12.008 .
Sachs-Quintana I T, Heumuller T, Mateker W R, Orozco D E, Cheacharoen R, Sweetnam S, Brabec C J, McGehee M D . Adv Funct Mater , 2014 . 24 ( 25 ): 3978 - 3985 . DOI:10.1002/adfm.201304166http://doi.org/10.1002/adfm.201304166 .
Conings B, Bertho S, Vandewal K, Senes A, D'Haen J, Manca J, Janssen R A J . Appl Phys Lett , 2010 . 96 ( 16 ): 163301 DOI:10.1063/1.3391669http://doi.org/10.1063/1.3391669 .
Peters C H, Sachs-Quintana I T, Kastrop J P, Beaupre S, Leclerc M, McGehee M D . Adv Energy Mater , 2011 . 1 ( 4 ): 491 - 494 . DOI:10.1002/aenm.201100138http://doi.org/10.1002/aenm.201100138 .
Li N, Perea J D, Kassar T, Richter M, Heumueller T, Matt G J, Hou Y, Gueldal N S, Chen H W, Chen S, Langner S, Berlinghof M, Unruh T, Brabec C J . Nat Commun , 2017 . 8 14541 DOI:10.1038/ncomms14541http://doi.org/10.1038/ncomms14541 .
Kong J, Song S, Yoo M, Lee G Y, Kwon O, Park J K, Back H, Kim G, Lee S H, Suh H, Lee K . Nat Commun , 2014 . 5 5688 DOI:10.1038/ncomms6688http://doi.org/10.1038/ncomms6688 .
Lindqvist C, Sanz-Velasco A, Wang E, Bäcke O, Gustafsson S, Olsson E, Andersson M R, Müller C . J Mater Chem A , 2013 . 1 ( 24 ): 7174 - 7180 . DOI:10.1039/c3ta11018dhttp://doi.org/10.1039/c3ta11018d .
Zhao J, Swinnen A, Van Assche G, Manca J, Vanderzande D, Mele B V . J Phys Chem B , 2009 . 113 ( 6 ): 1587 - 1591 . DOI:10.1021/jp804151ahttp://doi.org/10.1021/jp804151a .
Distler A, Sauermann T, Egelhaaf H-J, Rodman S, Waller D, Cheon K S, Lee M, Guldi D M . Adv Energy Mater , 2014 . 4 ( 1 ): 1300693 DOI:10.1002/aenm.201300693http://doi.org/10.1002/aenm.201300693 .
Heumueller T, Mateker W R, Distler A, Fritze U F, Cheacharoen R, Nguyen W H, Biele M, Salvador M, von Delius M, Egelhaaf H J, McGehee M D, Brabec C J . Energ Environ Sci , 2016 . 9 ( 1 ): 247 - 256 . DOI:10.1039/C5EE02912Khttp://doi.org/10.1039/C5EE02912K .
Yan L P, Yi J D, Chen Q, Dou J Y, Yang Y Z, Liu X G, Chen L W, Ma C Q . J Mater Chem A , 2017 . 5 ( 20 ): 10010 - 10020 . DOI:10.1039/C7TA02492Dhttp://doi.org/10.1039/C7TA02492D .
Wong H C, Li Z, Tan C H, Zhong H L, Huang Z G, Bronstein H, McCulloch I, Cabral J T, Durrant J R . ACS Nano , 2014 . 8 ( 2 ): 1297 - 1308 . DOI:10.1021/nn404687shttp://doi.org/10.1021/nn404687s .
Cook S, Ohkita H, Kim Y, Benson-Smith J J, Bradley D D C, Durrant J R . Chem Phys Lett , 2007 . 445 ( 4-6 ): 276 - 280 . DOI:10.1016/j.cplett.2007.08.005http://doi.org/10.1016/j.cplett.2007.08.005 .
Tregnago G, Wykes M, Paterno G M, Beljonne D, Cacialli F . J Phys Chem C , 2015 . 119 ( 21 ): 11846 - 11851 . DOI:10.1021/acs.jpcc.5b02345http://doi.org/10.1021/acs.jpcc.5b02345 .
Piersimoni F, Degutis G, Bertho S, Vandewal K, Spoltore D, Vangerven T, Drijkoningen J, Van Bael M K, Hardy A, D'Haen J, Maes W, Vanderzande D, Nesladek M, Manca J . J Polym Sci, Part B: Polym Phys , 2013 . 51 ( 16 ): 1209 - 1214 . DOI:10.1002/polb.23330http://doi.org/10.1002/polb.23330 .
Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin P G, Kim Y, Anthopoulos T D, Stavrinou P N, Bradley D D C, Nelson J . Nat Mater , 2008 . 7 ( 2 ): 158 - 164 . DOI:10.1038/nmat2102http://doi.org/10.1038/nmat2102 .
Kohn P, Rong Z X, Scherer K H, Sepe A, Sommer M, Muller-Buschbaum P, Friend R H, Steiner U, Huttner S . Macromolecules , 2013 . 46 ( 10 ): 4002 - 4013 . DOI:10.1021/ma400403chttp://doi.org/10.1021/ma400403c .
Watts B, Belcher W J, Thomsen L, Ade H, Dastoor P C . Macromolecules , 2009 . 42 ( 21 ): 8392 - 8397 . DOI:10.1021/ma901444uhttp://doi.org/10.1021/ma901444u .
Peters C H, Sachs-Quintana I T, Mateker W R, Heumueller T, Rivnay J, Noriega R, Beiley Z M, Hoke E T, Salleo A, McGehee M D . Adv Mater , 2012 . 24 ( 5 ): 663 - 668 . DOI:10.1002/adma.201103010http://doi.org/10.1002/adma.201103010 .
Meletov K P, Arvanitidis J, Christofilos D, Kourouklis G A, Davydov V A . Chem Phys Lett , 2016 . 654 81 - 85 . DOI:10.1016/j.cplett.2016.05.016http://doi.org/10.1016/j.cplett.2016.05.016 .
0
浏览量
31
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构