浏览全部资源
扫码关注微信
1.四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
2.四川轻化工大学材料科学与工程学院 自贡 643002
E-mail: lxy6912@sina.com
纸质出版日期:2021-4-3,
网络出版日期:2020-12-9,
收稿日期:2020-9-23,
修回日期:2020-10-27,
扫 描 看 全 文
罗龙波, 叶信合, 易江, 李科, 刘向阳. 通过交联抑制高温下氢键的解离提高聚酰亚胺的耐热性和尺寸稳定性[J]. 高分子学报, 2021,52(4):363-370.
Long-bo Luo, Xin-he Ye, Jiang Yi, Ke Li, Xiang-yang Liu. Heat Resistance and Dimensional Stability of Polyimide Improved by Inhibiting the Dissociation of Hydrogen Bonds at High Temperatures through Crosslinking[J]. Acta Polymerica Sinica, 2021,52(4):363-370.
罗龙波, 叶信合, 易江, 李科, 刘向阳. 通过交联抑制高温下氢键的解离提高聚酰亚胺的耐热性和尺寸稳定性[J]. 高分子学报, 2021,52(4):363-370. DOI: 10.11777/j.issn1000-3304.2020.20222.
Long-bo Luo, Xin-he Ye, Jiang Yi, Ke Li, Xiang-yang Liu. Heat Resistance and Dimensional Stability of Polyimide Improved by Inhibiting the Dissociation of Hydrogen Bonds at High Temperatures through Crosslinking[J]. Acta Polymerica Sinica, 2021,52(4):363-370. DOI: 10.11777/j.issn1000-3304.2020.20222.
将炔基结构引入该聚酰亚胺主链中,通过热引发化学交联反应构建化学限域位点,抑制高温下氢键的减弱和解离,进而通过交联和高温下更加稳定的氢键协同性提升了该PI薄膜在高温下的尺寸稳定性. 结果表明,相对于线性PI,交联后PI在400 °C的强氢键含量达到26.1%,与未交联PI相比提高了近50%,从而将300~400 °C范围的的热膨胀系数(CTE)从33.8×10
−6
/K降低至5.1×10
−6
/K. 最终制备的PI膜的
T
g
高达452 °C,40~400 °C范围内的CTE仅为2.1×10
−6
/K,拉伸强度高达231 MPa,有望用于AMOLED的基底材料.
Polyimide (PI) containing benzimidazole structure exhibits good heat resistance and dimensional stability due to the intermolecular hydrogen bonding
which is regarded as promising substrate material for OLED flexible display devices. However
the dissociation of hydrogen bonds at high temperatures results in PI film high thermal expansion coefficient in the temperature range above 300 °C
limiting the practicality of the PI film as the flexible display substrate material. In this study
the dianhydride containing alkynyl structure was introduced into the PI’s main chain
and chemically restricted sites were constructed by chemical crosslinking reactions to suppress the dissociation of hydrogen bonds at high temperatures
thereby improving the thermal performance of the PI film. The results show that
compared with linear polyimide
the hydrogen bonding content of PI at 400 °C is increased by nearly 50% after crosslinking. Correspondingly
the glass transition temperature of the chemically cross-linked PI film is as high as 452 °C
and the thermal expansion coefficient in the range of 40−400 °C is only 2.1×10
−6
/K. And the tensile strength of obtained PI film reaches 230.9 MPa. This PI film would be as potential substrate material for flexible display devices.
聚酰亚胺氢键相互作用化学交联尺寸稳定
PolyimideHydrogen bondChemical crosslinkingDimensional stability
Bai Lan(白兰), Zhai Lei(翟磊), He Minhui(何民辉), Wang Changou(王畅鸥), Mo Song(莫松), Fan Lin(范琳) . Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 12 ): 1305 - 1313 . DOI:10.11777/j.issn1000-3304.2019.19099http://doi.org/10.11777/j.issn1000-3304.2019.19099 .
Xu Zhiping(许志平). Study on Flexible Polyimide Substrate for Active Matrix Organic Light Emitting Diodes Display (用于AMOLED显示的聚酰亚胺柔性衬底研究). Doctoral Dissertation of South China University of Technology(华南理工大学博士论文), 2017
Bai L, Zhai L, He M H, Wang C O, Mo S, Fan L . Chinese J Polym Sci , 2020 . 38 ( 7 ): 748 - 758 . DOI:10.1007/s10118-020-2366-1http://doi.org/10.1007/s10118-020-2366-1 .
Wang Z H, Chen X, Yang H X, Zhao J, Yang S Y . Chinese J Polym Sci , 2019 . 37 ( 3 ): 268 - 278 . DOI:10.1007/s10118-019-2173-8http://doi.org/10.1007/s10118-019-2173-8 .
Wang S, Zhou H, Dang G, Chen C . J Polym Sci, Part A: Polym Chem , 2009 . 47 ( 8 ): 2024 - 2031 . DOI:10.1002/pola.23306http://doi.org/10.1002/pola.23306 .
Sun M, Chang J, Tian G, Niu H, Wu D . J Mater Sci , 2016 . 51 ( 6 ): 2830 - 2840.
Luo L, Zhang J, Huang J, Feng Y, Peng C, Wang X, Liu X . J Appl Polym Sci , 2016 . 133 ( 39 ): 44000 DOI:10.1002/app.44000http://doi.org/10.1002/app.44000 .
Yue Z, Cai Y B, Xu S . J Polym Res , 2014 . 21 ( 6 ): 463 - 470 . DOI:10.1007/s10965-014-0463-yhttp://doi.org/10.1007/s10965-014-0463-y .
Lian M, Lu X, Lu Q . Macromolecules , 2018 . 51 ( 24 ): 10127 - 10135 . DOI:10.1021/acs.macromol.8b02282http://doi.org/10.1021/acs.macromol.8b02282 .
Tian Y Y, Luo L B, Yang Q Q, Zhang L J, Wang M, Wu D F, Wang X, Liu X Y . Polymer , 2020 . 188 122100 DOI:10.1016/j.polymer.2019.122100http://doi.org/10.1016/j.polymer.2019.122100 .
Skrovanek D J, Howe S E, Painter P C, Coleman M M . Macromolecules , 1985 . 18 ( 9 ): 1676 - 1683 . DOI:10.1021/ma00151a006http://doi.org/10.1021/ma00151a006 .
Skrovanek D J, Painter P C, Coleman M M . Macromolecules , 1986 . 19 ( 3 ): 699 - 705 . DOI:10.1021/ma00157a037http://doi.org/10.1021/ma00157a037 .
Fang X, Hutcheon R, Scola D A . J Polym Sci, Part A: Polym Chem , 2000 . 38 ( 14 ): 2526 - 2535 . DOI:10.1002/1099-0518(20000715)38:14<2526::AID-POLA20>3.0.CO;2-2http://doi.org/10.1002/1099-0518(20000715)38:14<2526::AID-POLA20>3.0.CO;2-2 .
Ando S, Harada M, Okada T, Ishige R . Polymers , 2018 . 10 ( 7 ): 761 - 774 . DOI:10.3390/polym10070761http://doi.org/10.3390/polym10070761 .
Dai Y, Feng J, Meng C, Luo L, Liu X . ChemistrySelect , 2019 . 4 ( 13 ): 3980 - 3983 . DOI:10.1002/slct.201900463http://doi.org/10.1002/slct.201900463 .
Ebisawa S, Ishii J, Sato M, Vladimirov L, Hasegawa M . Eur Polym J , 2010 . 46 ( 2 ): 283 - 297 . DOI:10.1016/j.eurpolymj.2009.10.015http://doi.org/10.1016/j.eurpolymj.2009.10.015 .
Ishii J, Shimizu N, Ishihara N, Ikeda Y, Sensui N, Matano T, Hasegawa M . Eur Polym J , 2010 . 46 ( 1 ): 69 - 80 . DOI:10.1016/j.eurpolymj.2009.09.002http://doi.org/10.1016/j.eurpolymj.2009.09.002 .
Ishii J, Takata A, Oami Y, Yokota R, Vladimirov L, Hasegawa M . Eur Polym J , 2010 . 46 ( 4 ): 681 - 693 . DOI:10.1016/j.eurpolymj.2010.01.007http://doi.org/10.1016/j.eurpolymj.2010.01.007 .
Rehman S, Song G, Jia H, Zhou H, Zhao X, Dang G, Chen C . J Appl Polym Sci , 2013 . 129 ( 5 ): 2561 - 2570 . DOI:10.1002/app.38969http://doi.org/10.1002/app.38969 .
Luo L B, Yao J, Wang X, Li K, Huang J Y, Li B Y, Wang H N, Feng Y, Liu X Y . Polymer , 2014 . 55 ( 16 ): 4258 - 4269 . DOI:10.1016/j.polymer.2014.06.080http://doi.org/10.1016/j.polymer.2014.06.080 .
0
浏览量
91
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构