浏览全部资源
扫码关注微信
青岛科技大学 橡塑材料与工程教育部重点实验室 山东省橡塑材料与工程重点实验室 青岛 266042
E-mail: ww@qust.edu.cn
纸质出版日期:2021-07-20,
网络出版日期:2020-12-17,
收稿日期:2020-10-16,
扫 描 看 全 文
王新宇,王伟.橡胶动态生热数值模拟与实验研究[J].高分子学报,2021,52(07):787-795.
Xin-yu Wang, Wei Wang. Numerical Simulation and Experimental Study on Dynamic Heat Build-up of Rubber[J]. ACTA POLYMERICA SINICA, 2021,52(7):787-795.
王新宇,王伟.橡胶动态生热数值模拟与实验研究[J].高分子学报,2021,52(07):787-795. DOI: 10.11777/j.issn1000-3304.2020.20231.
Xin-yu Wang, Wei Wang. Numerical Simulation and Experimental Study on Dynamic Heat Build-up of Rubber[J]. ACTA POLYMERICA SINICA, 2021,52(7):787-795. DOI: 10.11777/j.issn1000-3304.2020.20231.
为提高橡胶动态生热数值模拟的计算精度,基于时温等效原理给出了一种同时考虑温度和应变率来确定拉伸测试条件的方法,它可同时满足设备测试条件和制品使用工况. 此外,为获得更准确的超弹性本构方程参数,采用了一种用应力松弛实验得到橡胶完全松弛状态下的一组应力来拟合黏弹性算法中超弹性部分的方法. 采用上述测试方法并借助ABAQUS软件建立橡胶圆柱的动态生热有限元模型,在考虑温度、应变率和动应变幅值对橡胶力学性能影响的基础上,本研究用基于损耗角正切和超弹性模型的生热计算方法和基于频域Prony级数的黏弹性生热计算方法分别计算了橡胶圆柱的压缩生热. 结果表明,2种方法计算的温升均与压缩生热实验结果吻合较好,但黏弹性算法精度更高,预测的升温历程与实验结果吻合很好,更好地描述了橡胶滞后生热现象,从而验证了本文提出的确定材料测试条件方法的正确性.
In order to improve the calculation accuracy of the numerical simulation of rubber dynamic heat build-up
based on the time-temperature equivalence principle
a new method to determine the tensile test conditions taking into account both temperature and strain rate is proposed in this study. It may meet the test conditions of equipment and service conditions of rubber products at the same time. Moreover
in order to obtain more accurate parameters of the hyperelastic constitutive equation
a set of stresses obtained by stress relaxation experiment under the fully relaxed state of rubber is used to fit the hyperelastic model of viscoelastic approach. Based on the mentioned test methods and ABAQUS software
the dynamic compression heat generation finite element models of rubber cylinder are established. Considering the influence of temperature
strain rate and dynamic strain amplitude on the mechanical properties of rubber
the heat build-up calculation method based on loss tangent and hyperelastic model and viscoelastic heat build-up calculation method based on Prony series in frequency domain are respectively used to calculate the compression heat build-up of rubber cylinder. The results show that the temperature rise calculated by the two approaches are in agreement with the experimental results of compression heat build-up
but the viscoelasticity algorithm has higher accuracy
and the heat build-up history predicted agrees well with the experimental results
which can better describe the hysteresis heat build-up phenomenon of rubber
consequently verifying the correctness of the material test conditions proposed in this study.
橡胶动态生热时温等效原理数值模拟黏弹性模型
Rubber dynamic heat build-upTime-temperature equivalence principleNumerical simulationViscoelastic model
Lu Yuyuan(卢宇源), An Lijia(安立佳), Wang Jian(王健). Acta Polymerica Sinica(高分子学报), 2016, (6): 688-697. doi:10.11777/j.issn1000-3304.2016.16108http://dx.doi.org/10.11777/j.issn1000-3304.2016.16108
Conant F S. Rubber Chem Technol, 1971, 44(2): 397-439. doi:10.5254/1.3547374http://dx.doi.org/10.5254/1.3547374
Akutagawa K, Hamatani S, Nashi T. Polymer, 2015, 66: 201-209. doi:10.1016/j.polymer.2015.04.040http://dx.doi.org/10.1016/j.polymer.2015.04.040
Whicker D, Browne A L, Segalman D J, Wickliffe L E. Tire Sci Technol, 1981, 9(1): 3-18. doi:10.2346/1.2151023http://dx.doi.org/10.2346/1.2151023
Jeusette J P, Ebbott T G, Kerchman V, Hohman R L. Tire Sci Technol, 1999, 27(1): 2-21. doi:10.2346/1.2135974http://dx.doi.org/10.2346/1.2135974
Futamura S. Rubber Chem Technol, 1991, 64(1): 57-64. doi:10.5254/1.3538540http://dx.doi.org/10.5254/1.3538540
Yavari B, Tworzydlo W W, Bass J M. Tire Sci Technol, 1993, 21(3): 163-178. doi:10.2346/1.2139527http://dx.doi.org/10.2346/1.2139527
Li F Z, Liu F, Liu J, Gao Y Y, Lu Y L, Chen J F, Yang H B, Zhang L Q. Compos Sci Technol, 2018, 167: 404-410. doi:10.1016/j.compscitech.2018.08.034http://dx.doi.org/10.1016/j.compscitech.2018.08.034
Nackenhorst U. Comput Meth Appl Mech Eng., 2004, 193(39-41): 4299-4322. doi:10.1016/j.cma.2004.01.033http://dx.doi.org/10.1016/j.cma.2004.01.033
Li Y, West R L. Tire Sci Technol, 2019, 47(1): 77-100. doi:10.2346/tire.19.150089http://dx.doi.org/10.2346/tire.19.150089
Rafei M, Ghoreishy M H R, Naderi G. Math Comput Simul, 2018, 144: 35-51. doi:10.1016/j.matcom.2017.05.011http://dx.doi.org/10.1016/j.matcom.2017.05.011
Shaw M T, MacKnight W J. Introduction to Polymer Viscoelasticity, 3rd ed. New Jersey: John Wiley & Sons, 2005. 119. doi:10.1002/0471741833http://dx.doi.org/10.1002/0471741833
Hu Xiaoling(胡小玲). Micro- and Macro-viscohyperelastic Behavior of Carbon Black Filled Rubbers(炭黑填充橡胶黏超弹性力学行为的宏细观研究). Doctoral Dissertation of Xiangtan University(湘潭大学博士学位论文), 2013
Behnke R, Kaliske M. Int J Non-Linear Mech, 2015, 68: 101-131. doi:10.1016/j.ijnonlinmec.2014.06.014http://dx.doi.org/10.1016/j.ijnonlinmec.2014.06.014
Luo W B, Hu X L, Wang C H, Li Q F. Int J Mech Sci, 2010, 52(2): 168-174. doi:10.1016/j.ijmecsci.2009.09.001http://dx.doi.org/10.1016/j.ijmecsci.2009.09.001
Luo W B, Yin B Y, Hu X L, Zhou Z, Deng Y, Song K. Polym Test, 2018, 69: 116-124. doi:10.1016/j.polymertesting.2018.05.017http://dx.doi.org/10.1016/j.polymertesting.2018.05.017
Li F Z, Liu J, Yang H B, Lu Y L, Zhang L Q. Polymer, 2016, 101: 199-207. doi:10.1016/j.polymer.2016.08.065http://dx.doi.org/10.1016/j.polymer.2016.08.065
Li Wenbo(李文博.) Dynamic Simulation of Rubber Transmission Belt and Energy Dissipation Mechanism Investigation(橡胶传动带动态仿真及能耗机理研究). Doctoral Dissertation of Qingdao University of Science and Technology(青岛科技大学博士学位论文), 2019. doi:10.35812/cellulosechemtechnol.2020.54.38http://dx.doi.org/10.35812/cellulosechemtechnol.2020.54.38
Zhi Jieying(智杰颖), Lu Hongli(路洪丽), Wang Haiqing(王海庆), Wang Shenping(王慎平), Lin Wenjun(林文俊), Qiao Congde(乔从德), Jia Yuxi(贾玉玺). Acta Polymerica Sinica(高分子学报), 2016, (7): 887-894. doi:10.11777/j.issn1000-3304.2016.15332http://dx.doi.org/10.11777/j.issn1000-3304.2016.15332
Zhi Jieying(智杰颖), Wang Shenping(王慎平), Wang Haiqing(王海庆), Lu Hongli(路洪丽), Lin Wenjun(林文俊), Qiao Congde(乔从德), Jia Yuxi(贾玉玺). Acta Polymerica Sinica(高分子学报), 2017, (4): 708-715. doi:10.11777/j.issn1000-3304.2017.16172http://dx.doi.org/10.11777/j.issn1000-3304.2017.16172
Ghoreishy M H R. Mater Des, 2012, 35: 791-797. doi:10.1016/j.matdes.2011.05.057http://dx.doi.org/10.1016/j.matdes.2011.05.057
Wu Fuqi(吴福麒). Finite Element Analysis of Steady Rolling Temperature Field of Tire(轮胎稳态滚动温度场的有限元分析). Doctoral Dissertation of University of Science and Technology of China(中国科学技术大学博士学位论文), 2009. doi:10.1109/icicta.2009.851http://dx.doi.org/10.1109/icicta.2009.851
Li Zhao(李昭), Liu Feng(刘枫), Li Fanzhu(李凡珠), Yang Haibo(杨海波), Lu Yonglai(卢咏来), Zhang Liqun(张立群). Tire Industry(轮胎工业), 2019, 39(7): 390-396. doi:10.12135/j.issn.1006-8171.2019.07.0390http://dx.doi.org/10.12135/j.issn.1006-8171.2019.07.0390
Zhi J Y, Wang S P, Zhang M J, Wang H Q, Lu H L, Lin W J, Qiao C D, Hu C X, Jia Y X. Mech Time-Depend Mater, 2019, 23: 427-442. doi:10.1007/s11043-018-9398-8http://dx.doi.org/10.1007/s11043-018-9398-8
Yeoh O H. Rubber Chem Technol, 1990, 63(5): 792-805. doi:10.5254/1.3538289http://dx.doi.org/10.5254/1.3538289
Yeoh O H. Rubber Chem Technol, 1993, 66(5): 754-771. doi:10.5254/1.3538343http://dx.doi.org/10.5254/1.3538343
Li X B, Wei Y T. Rubber Chem Technol, 2015, 88(4): 604-627. doi:10.5254/rct.15.84879http://dx.doi.org/10.5254/rct.15.84879
0
浏览量
48
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构