浏览全部资源
扫码关注微信
南京大学化学化工学院 配位化学国家重点实验室 南京 210023
[ "胡文兵,男,1966年生. 南京大学化学化工学院高分子系教授、博士生导师. 1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系. 分别于1998~1999年赴德国弗莱堡大学物理系、2000~2001年美国田纳西大学化学系、2001~2003年荷兰物质科学研究院(FOM)原子与分子物理研究所从事博士后研究. 2004年至今,在南京大学任教. 2008年获杰出青年科学基金资助,2020年入选美国物理学会会士(APS Fellow). 主要研究方向为采用蒙特卡洛分子模拟和Flash DSC研究高分子结晶机理及材料热导率表征" ]
纸质出版日期:2021-4-3,
网络出版日期:2021-1-6,
收稿日期:2020-10-26,
修回日期:2020-11-17,
扫 描 看 全 文
陈咏萱, 周东山, 胡文兵. 示差扫描量热法进展及其在高分子表征中的应用[J]. 高分子学报, 2021,52(4):423-444.
Yong-xuan Chen, Dong-shan Zhou, Wen-bing Hu. Progress of Differential Scanning Calorimetry and Its Application in Polymer Characterization[J]. Acta Polymerica Sinica, 2021,52(4):423-444.
陈咏萱, 周东山, 胡文兵. 示差扫描量热法进展及其在高分子表征中的应用[J]. 高分子学报, 2021,52(4):423-444. DOI: 10.11777/j.issn1000-3304.2020.20234.
Yong-xuan Chen, Dong-shan Zhou, Wen-bing Hu. Progress of Differential Scanning Calorimetry and Its Application in Polymer Characterization[J]. Acta Polymerica Sinica, 2021,52(4):423-444. DOI: 10.11777/j.issn1000-3304.2020.20234.
示差扫描量热法(DSC)是表征材料热性能和热反应的一种高效研究工具,具有操作简便、应用广泛、测量值物理意义明确等优点. 近年来DSC技术的发展大大拓展了高分子材料表征的测试范围,促进了对高分子物理转变的热力学和动力学的深入研究. 温度调制示差扫描量热法(TMDSC)是DSC在20世纪90年代的标志性进展,它在传统DSC的线性升温速率的基础之上引入了调制速率,从而可将总热流信号分解为可逆信号和不可逆信号两部分,并能测量准等温过程的可逆热容. 闪速示差扫描量热法(FSC)是DSC技术近年来的创新性发展,它采用体积微小的氮化硅薄膜芯片传感器替代传统DSC的坩埚作为试样容器和控温系统,实现了超快速的升降温扫描速率以及微米尺度上的样品测试,使得对于高分子在扫描过程中的结构重组机制的分析以及对实际的生产加工条件的直接模拟成为可能. 本文从热分析基础出发,依次对传统DSC、TMDSC和FSC进行了介绍,内容覆盖其发展历史、方法原理、操作技巧及其在高分子表征中的应用举例,最后对DSC未来的发展和应用进行了展望. 本文希望通过综述DSC原理、实验技巧和应用进展,帮助读者加深对DSC这一常用表征技术的理解,进一步拓展DSC表征高分子材料的应用.
Differential scanning calorimetry (DSC) is a highly efficient tool to characterize the thermal properties and to investigate thermal reactions of materials owing to its advantages of simplicity and universality as well as the well-defined measurement results with a clear physical meaning. In recent years
the tremendous development of DSC technique has greatly extended the measurement range for polymer characterization
facilitating the further research on thermodynamics and kinetics of physical transitions in polymer materials. Temperature-modulated DSC (TMDSC)
a remarkable advance in DSC technique in 1990s
introduces scanning rate perturbation into the traditional linear heating rate so that the overall heat flux could be separated into reversible and non-reversible signals and furthermore
the reversing heat capacity could be measured in the quasi-isothermal process. Fast scanning chip-calorimetry (FSC) is a new progress of DSC technique in recent years
which adopts a miniature chip made of silicon nitride thin films to replace the traditional crucible as the sample holder and temperature controller
thus achieving ultra-fast heating and cooling rates for the measurement with sample mass on micro- and nanogram scale
which makes it possible to analyze the structural reorganization phenomena occurring frequently during temperature scanning and to simulate the actual condition of polymer processing. This review starts with the fundamentals of thermal analysis
followed with a sequential introduction of DSC
TMDSC and FSC by covering their histories
principles
experimental skills as well as their practical examples of polymer characterization. In the end
the prospects of the development and application of DSC are highlighted. We hope this survey would help the readers to gain a deeper understanding of the commonly used DSC technique and encourages them to expand further applications of DSC techniques in polymer characterization.
高分子表征示差扫描量热法温度调制示差扫描量热法闪速示差扫描量热法
Polymer characterizationDifferential scanning calorimetryTemperature-modulated DSCFast scanning chip-calorimetry
Rupp R(丽贝卡·鲁普). Water, Gas, Fire and Earth-History of Element Discovery(水气火土—元素发现史话). Beijing(北京): The Commercial Press(商务印书馆), 2008.1−74
ICTAC Nomenclature Committee. Draft-03b. doc 07.03. Recommendations for Names and Definitions in Thermal Analysis and Calorimetry.
ASTM E473-07b, Standard Terminology Relating to Thermal Analysis and Rheology, ASTM International, West Conshohocken, PA, 2007, http://www.astm.orghttp://www.astm.org
ASTM E2161-01, Standard Terminology Relating to Performance Validation in Thermal Analysis, ASTM International, West Conshohocken, PA, 2001, http://www.astm.orghttp://www.astm.org
Le Chatelier H . Z Phys Chem , 1887 . 1 296 .
Le Chatelier H . Bull Soc Franc Mineral Cryst , 1887 . 10 204 - 211.
Roberts-Austen W C . Proc Inst Mech Eng , 1899 . 1 35 - 102.
Boersma S L . J Amer Ceram Soc , 1955 . 38 281 - 284 . DOI:10.1111/j.1151-2916.1955.tb14945.xhttp://doi.org/10.1111/j.1151-2916.1955.tb14945.x .
O’Neill M J . Anal Chem , 1964 . 36 1238 - 1245 . DOI:10.1021/ac60213a020http://doi.org/10.1021/ac60213a020 .
Watson E S, O’Neill M J, Justin J, Brenner N . Anal Chem , 1964 . 36 1233 - 1237 . DOI:10.1021/ac60213a019http://doi.org/10.1021/ac60213a019 .
Wunderlich B. Thermal Analysis of Polymeric Materials[M]. Springer: Berlin, 2005. 329−355
Liu Zhenhai(刘振海), Lu Liming(陆立明), Tan Yuanwang(唐远望). A Brief Tutorial on Thermal Analysis(热分析简明教程). Beijing(北京): Science Press(科学出版社), 2012. 83−104
Ding Yanwei(丁延伟). Fundamentals of Thermal Analysis(热分析基础). Hefei(合肥): University of Science and technology of China Press(中国科学技术大学出版社), 2020. 188−231
Lu Liming(陆立明). Basics of Thermal Analysis Application(热分析应用基础). Shanghai(上海): Donghua University Press(东华大学出版社), 2010. 34−43
ASTM E1269-11(2018), Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, ASTM International, West Conshohocken, PA, 2018, http://www.astm.orghttp://www.astm.org
Gaur U, Wunderlich B. Advanced thermal analysis aystem (ATHAS) polymer heat capacity data bank. In: Computer Applications in Applied Polymer Science. New York: American Chemical Society, 1982. 355−366
ASTM E1356-08(2014), Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry, ASTM International, West Conshohocken, PA, 2014, http://www.astm.orghttp://www.astm.org
Höne G, Hemminger W F, Flammersheim H J. Differential Scanning Calorimetry. Berlin: Springer, 2003. 126−140
Lau S F, Suzuki H, Wunderlich B . J Polymer Sci: Polymer Phys Ed , 1984 . 22 379 - 405 . DOI:10.1002/pol.1984.180220305http://doi.org/10.1002/pol.1984.180220305 .
Huang M M, Dong X, Wang L L, Zheng L C, Liu G M, Gao X, Li C C, Müller A J, Wang D J . Macromolecules , 2018 . 51 ( 3 ): 1100 - 1109 . DOI:10.1021/acs.macromol.7b01779http://doi.org/10.1021/acs.macromol.7b01779 .
Wang Z F, Dong X, Cavallo D, Müller A J, Wang D J . Macromolecules , 2018 . 51 ( 15 ): 6037 - 6046 . DOI:10.1021/acs.macromol.8b01313http://doi.org/10.1021/acs.macromol.8b01313 .
Wang Z F, Dong X, Liu G M, Xing Q, Cavallo D, Jiang Q H, Müller A J, Wang D J . Polymer , 2018 . 138 396 - 406 . DOI:10.1016/j.polymer.2018.01.078http://doi.org/10.1016/j.polymer.2018.01.078 .
Dong Siyuan(董思远), Zhu Ping(朱平), Liu Jiguang(刘继广), Wang Dujing(王笃金), Dong Xia(董侠) . Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 2 ): 189 - 198 . DOI:10.11777/j.issn1000-3304.2018.18198http://doi.org/10.11777/j.issn1000-3304.2018.18198 .
Lu Liming(陆立明) . Polymer Bulletin(高分子通报) , 2009 . ( 3 ): 62 - 74.
Corbino O M . Physik Z , 1910 . 11 413 - 417.
Corbino O M . Physik Z , 1911 . 12 292 - 295.
Birge N O, Nagel S R . Phys Rev Lett , 1985 . 54 2674 - 2677 . DOI:10.1103/PhysRevLett.54.2674http://doi.org/10.1103/PhysRevLett.54.2674 .
Kraftmakher Y A . Z Prikladnoj Mech Tech Fiz , 1962 . 5 176 - 180.
Sullivan P, Seidel G . Ann Acad Sci Fennicae A VI , 1966 . 210 58 - 62.
Gobrecht H, Hamann K, Willers G . J Phys E: Sci Instrum , 1971 . 4 21 - 23 . DOI:10.1088/0022-3735/4/1/004http://doi.org/10.1088/0022-3735/4/1/004 .
Gill P S, Sauerbrunn S R, Reading M . J Therm Anal , 1993 . 40 931 - 939 . DOI:10.1007/bf02546852http://doi.org/10.1007/bf02546852 .
Reading M, Elliott D, Hill V L . J Thermal Anal , 1993 . 40 949 DOI:10.1007/BF02546854http://doi.org/10.1007/BF02546854 .
Reading M, Luget A, Wilson R . Thermochim Acta , 1994 . 238 295 - 307 . DOI:10.1016/S0040-6031(94)85215-4http://doi.org/10.1016/S0040-6031(94)85215-4 .
Reading M, Hourston D J. Modulated Temperature Differential Scanning Calorimetry: Theoretical and Practical Applications in Polymer Characterization. Berlin: Springer, 2006. 1−80
Hu W B, Wunderlich B . J Therm Anal Calorim , 2001 . 66 677 - 697 . DOI:10.1023/A:1013106118660http://doi.org/10.1023/A:1013106118660 .
Wunderlich B . Prog Polym Sci , 2003 . 28 383 - 450 . DOI:10.1016/S0079-6700(02)00085-0http://doi.org/10.1016/S0079-6700(02)00085-0 .
Schick C, Wurm A, Mohammed A . Thermochim Acta , 2003 . 396 119 - 132 . DOI:10.1016/S0040-6031(02)00526-9http://doi.org/10.1016/S0040-6031(02)00526-9 .
Schick C . Anal Bioanal Chem , 2009 . 395 1589 - 1611 . DOI:10.1007/s00216-009-3169-yhttp://doi.org/10.1007/s00216-009-3169-y .
Hu W B, Albrecht T, Strobl G . Macromolecules , 1999 . 32 7548 - 7554 . DOI:10.1021/ma9908649http://doi.org/10.1021/ma9908649 .
Jiang X M, Li Z L, Wang J, Gao H H, Zhou D S, Tang Y W, Hu W B . Thermochim Acta , 2015 . 603 79 - 84 . DOI:10.1016/j.tca.2014.04.002http://doi.org/10.1016/j.tca.2014.04.002 .
Gaur U, Wunderlich B . J Phys Chem Ref Data , 1981 . 10 1051 - 1064 . DOI:10.1063/1.555650http://doi.org/10.1063/1.555650 .
Boller A, Schick C, Wunderlich B . Thermochim Acta , 1995 . 266 97 - 111 . DOI:10.1016/0040-6031(95)02552-9http://doi.org/10.1016/0040-6031(95)02552-9 .
Pyda M, Wunderlich B . Macromolecules , 2005 . 38 ( 25 ): 10472 - 10479 . DOI:10.1021/ma051611khttp://doi.org/10.1021/ma051611k .
Schick C, Mathot V B F. Fast Scanning Calorimetry[M]. Springer: Switzerland, 2016. V−VII
Li Zhaolei(李照磊), Zhou Dongshan(周东山), Hu Wenbing(胡文兵) . Acta Polymerica Sinica(高分子学报) , 2016 . ( 9 ): 1179 - 1195 . DOI:10.11777/j.issn1000-3304.2016.16058http://doi.org/10.11777/j.issn1000-3304.2016.16058 .
Denlinger D W, Abarra E N, Allen K, Rooney P W, Messer M T, Watson S K, Hellman F . Rev Sci Instrum , 1994 . 65 ( 4 ): 946 - 958 . DOI:10.1063/1.1144925http://doi.org/10.1063/1.1144925 .
Allen L H, Ramanath G, Lai S L, Ma Z, Lee S, Allman D D J, Fuchs K P . Appl Phys Lett , 1994 . 64 ( 4 ): 417 - 419 . DOI:10.1063/1.111116http://doi.org/10.1063/1.111116 .
Efremov M Yu, Olson E A, Zhang M, Schiettekatte F, Zhang Z S, Allen L H . Rev Sci Instrum , 2004 . 75 ( 1 ): 179 - 191 . DOI:10.1063/1.1633000http://doi.org/10.1063/1.1633000 .
Adamovsky S, Minakov A A, Schick C . Thermochim Acta , 2003 . 403 ( 1 ): 55 - 63 . DOI:10.1016/S0040-6031(03)00182-5http://doi.org/10.1016/S0040-6031(03)00182-5 .
Adamovsky S, Schick C . Thermochim Acta , 2004 . 415 ( 1-2 ): 1 - 7 . DOI:10.1016/j.tca.2003.07.015http://doi.org/10.1016/j.tca.2003.07.015 .
Yu J, Tang Z A, Zhang F T, Wei G F, Wang L D . Chin Phys Lett , 2005 . 22 ( 9 ): 2429 - 2432 . DOI:10.1088/0256-307X/22/9/080http://doi.org/10.1088/0256-307X/22/9/080 .
Jiang J, Wei L, Zhou D. Integration of Fast Scanning Calorimetry (FSC) with microstructural analysis techniques. In: Schick C, Mathot V B F, ed. Fast Scanning Calorimetry, Switzerland: Springer, 2016. 361−379
Chen M Z, Du M T, Jiang J, Li D W, Jiang W, Zhuravlev E, Zhou D S, Schick C, Xue G . Thermochim Acta , 2011 . 526 ( 1-2 ): 58 - 64 . DOI:10.1016/j.tca.2011.08.020http://doi.org/10.1016/j.tca.2011.08.020 .
Jiang J, Zhuravlev E, Huang Z, Wei L, Xu Q, Shan M, Xue G, Zhou D, Schick C, Jiang W . Soft Matter , 2013 . 9 ( 5 ): 1488 - 1491 . DOI:10.1039/C2SM27012Ahttp://doi.org/10.1039/C2SM27012A .
Wei L, Jiang J, Shan M, Chen W, Deng Y, Xue G, Zhou D . Rev Sci Instrum , 2014 . 85 ( 7 ): 074901 - 074907 . DOI:10.1063/1.4889882http://doi.org/10.1063/1.4889882 .
van Herwaardena S . Procedia Eng , 2010 . 5 464 - 467 . DOI:10.1016/j.proeng.2010.09.147http://doi.org/10.1016/j.proeng.2010.09.147 .
Schick C, Mathot V B F. Material Characterization by Fast Scanning Calorimetry: Practice and Applications. In Fast Scanning Calorimetry. Switzerland: Springer, 2016. 3−299
Wang J, Li Z L, Perez R A, Müller A J, Zhang B Y, Grayson S M, Hu W B . Polymer , 2015 . 63 34 - 40 . DOI:10.1016/j.polymer.2015.02.039http://doi.org/10.1016/j.polymer.2015.02.039 .
Zhuravlev E, Schmelzer J W P, Wunderlich B, Schick C . Polymer , 2011 . 52 1983 - 1997 . DOI:10.1016/j.polymer.2011.03.013http://doi.org/10.1016/j.polymer.2011.03.013 .
Kalapat D, Tang Q Y, Zhang X H, Hu W B . J Therm Anal Calorim , 2017 . 128 1859 - 1866 . DOI:10.1007/s10973-017-6095-9http://doi.org/10.1007/s10973-017-6095-9 .
Santis F D, Adamovsky S, Titomanlio G, Schick C . Macromolecules , 2006 . 39 2562 - 2567 . DOI:10.1021/ma052525nhttp://doi.org/10.1021/ma052525n .
Santis F D, Adamovsky S, Titomanlio G, Schick C . Macromolecules , 2007 . 40 9026 - 9031 . DOI:10.1021/ma071491bhttp://doi.org/10.1021/ma071491b .
Stolte I, Androsch R, Di Lorenzo M L, Schick C . J Phys Chem B , 2013 . 117 ( 48 ): 15196 - 15203 . DOI:10.1021/jp4093404http://doi.org/10.1021/jp4093404 .
Shick C, Androsch R. New insights into polymer crystallizaiton by fast scanning chip calorimetry. In: Fast Scanning Calorimetry. Switzerland: Springer, 2016. 463−537
He Yucheng(何裕成), Xie Kefeng(谢科锋), Wang Youhao(王优浩), Zhou Dongshan(周东山), Hu Wenbing(胡文兵) . Acta Physico-Chimica Sinica(物理化学学报) , 2020 . 36 ( 6 ): 1905081 - 1905092 . DOI:10.3866/PKU.WHXB201905081http://doi.org/10.3866/PKU.WHXB201905081 .
Zhuravlev E, Schick C . Thermochim Acta , 2010 . 505 ( 1-2 ): 1 - 13 . DOI:10.1016/j.tca.2010.03.019http://doi.org/10.1016/j.tca.2010.03.019 .
Mollova A, Androsch R, Mileva D, Gahleitner M, Funari S S . Eur Polym J , 2013 . 49 ( 5 ): 1057 - 1065 . DOI:10.1016/j.eurpolymj.2013.01.015http://doi.org/10.1016/j.eurpolymj.2013.01.015 .
Iervolino E, van Herwaarden A W, van Herwaarden F G, van de Kerkhof E, van Grinsven P P W, Leenaers A C H I, Mathot V B F, Sarro P M . Thermochim Acta , 2011 . 522 ( 1-2 ): 53 - 59 . DOI:10.1016/j.tca.2011.01.023http://doi.org/10.1016/j.tca.2011.01.023 .
Cebe P, Partlow B P, Kaplan D L, Wurm A, Zhuravlev E, Schick C . Thermochim Acta , 2015 . 615 8 - 14 . DOI:10.1016/j.tca.2015.07.009http://doi.org/10.1016/j.tca.2015.07.009 .
Wang T, Li X H, Luo R Q, He Y C, Maeda S, Shen Q D, Hu W B . Thermochim Acta , 2020 . 690 178667 - 178672 . DOI:10.1016/j.tca.2020.178667http://doi.org/10.1016/j.tca.2020.178667 .
Hu Wenbing(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Industry Press(化学工业出版社), 2013. 114−163
Hu Wenbing(胡文兵). Introduction to Polymer Physics(高分子物理导论). Beijing(北京): Science Press(科学出版社), 2011. 146−173
He Y C, Luo R Q, Li Z L, Lv R H, Zhou D S, Lim S, Ren X N, Gao H X, Hu W B . Macromol Chem Phys , 2018 . 219 1700385 - 1700390 . DOI:10.1002/macp.201700385http://doi.org/10.1002/macp.201700385 .
Hu W B . Phys Rep , 2018 . 747 1 - 50 . DOI:10.1016/j.physrep.2018.04.004http://doi.org/10.1016/j.physrep.2018.04.004 .
Li X H, He Y C, Dong X, Ren X N, Gao H X, Hu W B . Polymer , 2020 . 189 122165 - 122173 . DOI:10.1016/j.polymer.2020.122165http://doi.org/10.1016/j.polymer.2020.122165 .
Toda A, Mikosaka M, Yamada K . Polymer , 2002 . 43 1667 - 1679 . DOI:10.1016/S0032-3861(01)00733-9http://doi.org/10.1016/S0032-3861(01)00733-9 .
Toda A, Kojima I, Hikosaka M . Macromolecules , 2008 . 41 120 - 127 . DOI:10.1021/ma702162mhttp://doi.org/10.1021/ma702162m .
Gao H H, Wang J, Schick C, Toda A, Zhou D S, Hu W B . Polymer , 2014 . 55 ( 16 ): 4307 - 4312 . DOI:10.1016/j.polymer.2014.06.048http://doi.org/10.1016/j.polymer.2014.06.048 .
Monnier X, Napolitano S, Cangialosi D . Nat Commun , 2020 . 11 4354 - 4360 . DOI:10.1038/s41467-020-18216-yhttp://doi.org/10.1038/s41467-020-18216-y .
Huang Z J, Jiang J, Xue G, Zhou D S . Chinese J Polym Sci , 2019 . 37 94 - 100 . DOI:10.1007/s10118-019-2177-4http://doi.org/10.1007/s10118-019-2177-4 .
Luo S C, Wei L, Jiang, J, Sha Y, Xue G, Wang X L, Zhou D S . J Polym Sci, Part B: Polym Phys , 2017 . 55 1357 - 1364 . DOI:10.1002/polb.24378http://doi.org/10.1002/polb.24378 .
Luo S C, Kui X, Xing E R, Wang X L, Xue G, Schick C, Hu W B, Zhuravlev E, Zhou D S . Macromolecules , 2018 . 51 ( 14 ): 5209 - 5218 . DOI:10.1021/acs.macromol.8b00692http://doi.org/10.1021/acs.macromol.8b00692 .
Luo S C, Wang T Y, Ocheje M U, Zhang S, Xu J, Qian Z Y, Gu X D, Xue G, Rondeau-Gagné S, Jiang J, Hu W B, Zhuravlev E, Zhou D S . Macromolecules , 2020 . 53 ( 11 ): 4480 - 4489 . DOI:10.1021/acs.macromol.9b02738http://doi.org/10.1021/acs.macromol.9b02738 .
Jiang J, Zhuravlev E, Hu W B, Schick C, Zhou D S . Chinese J Polym Sci , 2017 . 35 ( 8 ): 1009−1019 DOI:10.1007/s10118-017-1942-5http://doi.org/10.1007/s10118-017-1942-5 .
Lv R H, He Y C, Wang J P, Wang J, Hu J, Zhang J M, Hu W B . Polymer , 2019 . 174 123 - 129 . DOI:10.1016/j.polymer.2019.04.061http://doi.org/10.1016/j.polymer.2019.04.061 .
Schawe Jürgen E K, Löffler Jörg F . Nat Commun , 2019 . 10 ( 1 ): 1337 - 1346 . DOI:10.1038/s41467-018-07930-3http://doi.org/10.1038/s41467-018-07930-3 .
Monnier X, Cangialosi D . Phys Rev Lett , 2018 . 121 137801 - 137806 . DOI:10.1103/PhysRevLett.121.137801http://doi.org/10.1103/PhysRevLett.121.137801 .
Zhang Jianjun(张建军) . Acta Physico-Chimica Sinica(物理化学学报) , 2020 . 36 ( 6 ): 1907048 - 1907049 . DOI:10.3866/PKU.WHXB201907048http://doi.org/10.3866/PKU.WHXB201907048 .
He Y C, Li X H, Ge L, Qian Q Y, Hu W B . Thermochim Acta , 2019 . 677 21 - 25 . DOI:10.1016/j.tca.2019.01.003http://doi.org/10.1016/j.tca.2019.01.003 .
Xie K F, He Y C, Cai J, Hu W B . Thermochim Acta , 2020 . 683 178445 - 178449 . DOI:10.1016/j.tca.2019.178445http://doi.org/10.1016/j.tca.2019.178445 .
Jiang X M, Li Z L, Gao H H. Combining fast-scan chip calorimetry with molecular simulation to investigate polymer crystal melting. In: Schick C, Mathot V B F, ed. Fast Scanning Calorimetry. Springer: Switzerland, 2016. 379−403
0
浏览量
591
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构