浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
3.中山大学材料科学与工程学院 广州 510275
E-mail: dhxu@ciac.ac.cn
E-mail: zhaiwt3@mail.sysu.edu.cn
纸质出版日期:2021-4-3,
网络出版日期:2021-1-11,
收稿日期:2020-10-26,
修回日期:2020-12-10,
扫 描 看 全 文
刘芳, 赵志刚, 杨雪, 潘鸽, 石彤非, 许东华, 翟文涛. 热塑性聚氨酯微孔发泡材料的表观密度与其力学性能的关系[J]. 高分子学报, 2021,52(4):388-398.
Fang Liu, Zhi-gang Zhao, Xue Yang, Ge Pan, Tong-fei Shi, Dong-hua Xu, Wen-tao Zhai. Relationship between Apparent Density and Mechanical Properties of Microcellular Thermoplastic Polyurethane Foam[J]. Acta Polymerica Sinica, 2021,52(4):388-398.
刘芳, 赵志刚, 杨雪, 潘鸽, 石彤非, 许东华, 翟文涛. 热塑性聚氨酯微孔发泡材料的表观密度与其力学性能的关系[J]. 高分子学报, 2021,52(4):388-398. DOI: 10.11777/j.issn1000-3304.2020.20236.
Fang Liu, Zhi-gang Zhao, Xue Yang, Ge Pan, Tong-fei Shi, Dong-hua Xu, Wen-tao Zhai. Relationship between Apparent Density and Mechanical Properties of Microcellular Thermoplastic Polyurethane Foam[J]. Acta Polymerica Sinica, 2021,52(4):388-398. DOI: 10.11777/j.issn1000-3304.2020.20236.
用高压CO
2
流体通过升温发泡法制备了一系列不同表观密度的热塑性聚氨酯(TPU)微孔发泡材料,探究了TPU发泡材料的表观密度与其力学性能的关系. 微孔发泡材料的泡孔结构和表皮结构由扫描电子显微镜表征;不同表观密度材料的力学性能利用万能材料试验机和旋转流变仪表征. 研究发现:TPU微孔发泡材料的表观密度主要是由材料皮层厚度占比和泡孔层密度决定的,皮层厚度占比越小和泡孔面积占有率越高,泡沫的表观密度越小;微孔发泡材料在线性应变区的压缩模量
E
与材料表观密度
ρ
的关系为:
E
∝
ρ
1.7
,符合泡沫材料压缩模量与表观密度呈指数关系的基本结论;循环压缩实验中,随微孔发泡材料表观密度减小,损耗百分比增大,残余应变减小;流变实验中,微孔发泡材料的模量随表观密度变化没有明显的变化,阻尼因子tan
δ
随泡沫表观密度变化不呈单一的规律性. 同时,阐明了微孔发泡材料的压缩模量
E
和损耗百分比随表观密度变化的机理.
A series of microcellular thermoplastic polyurethane foams with different apparent densities were prepared by temperature-increasing foaming method with high-pressure CO
2
as blowing agent
and the relationship between the apparent density and mechanical properties was investigated. The structure of microcellular thermoplastic foam was characterized by scanning electron microscopy. The mechanical properties of the materials with different apparent densities were characterized by universal material testing machine and rotational rheometer. The results show that the apparent density of the microcellular thermoplastic polyurethane foam is mainly determined by the thickness ratio of the skin layer and the area occupation of cell. The smaller the ratio of the thickness of the skin layer and the higher the area occupation of cell
the smaller the foam density; the relationship between compression modulus
E
and apparent density
ρ
of the samples in the linear strain region is as follows:
E
∝
ρ
1.7
which is consistent with the basic conclusion that the relationship between modulus and density of foam materials is exponential; in the cyclic compression experiment
as the density of the foam material decreases
the residual strain decreases
and the hysteresis increase; in the rheological experiment
the modulus of the foamed material does not change significantly with the density
and the damping factor tan
δ
does not vary monotonically with the foam density. At the same time
the dependence of compression modulus
E
and hysteresis with foam density was also explained.
聚氨酯微孔发泡材料皮层表观密度力学性能流变
Microcellular thermoplastic polyurethane foamSkinApparent densityMechanical propertiesRheology
Zhang W, Lei Y, Li X T, Shao H M, Xu W D, Li D S . Mater Lett , 2020 . 267 127542 DOI:10.1016/j.matlet.2020.127542http://doi.org/10.1016/j.matlet.2020.127542 .
Sung G, Kim J S, Kim J H . Polym Adv Technol , 2018 . 29 ( 2 ): 852 - 859 . DOI:10.1002/pat.4195http://doi.org/10.1002/pat.4195 .
Li Ting(李婷), Zhang Guangcheng(张广成), Chen Ying(陈营), Chen Ting(陈挺), Zhang Xiao(张晓), Zhang Yougang(张友刚), Peng Hua(彭华) . Engineering Plastics Application(工程塑料应用) , 2008 . ( 12 ): 5 - 8 . DOI:10.3969/j.issn.1001-3539.2008.12.003http://doi.org/10.3969/j.issn.1001-3539.2008.12.003 .
Zhao Hengping(赵恒平), Cao Cheng(曹铖), Zhao Jun(赵军), Shen Chen(沈沉), Zhao Yi(赵怡) . Chemical Propellants & Polymeric Materials(化学推进剂与高分子材料) , 2019 . 17 ( 2 ): 72 - 75.
Sun Gang(孙刚), Liu Yu(刘预), Feng Fang(冯芳), Sun Hongguang(孙洪广), Bian Kaisheng(边开胜), Hu Keao(胡克鳌) . Materials Reports(材料导报) , 2006 . ( 3 ): 29 - 32, 36 . DOI:10.3321/j.issn:1005-023X.2006.03.008http://doi.org/10.3321/j.issn:1005-023X.2006.03.008 .
Fan Caifa(范才发), Yao Qingjin(幺庆金), Wan Xiaolong(万小龙) . Polyurethane Industry(聚氨酯工业) , 2019 . 29 ( 6 ): 31 - 33.
Sun Xiaowei(孙小伟), Sun Junkun(孙军坤), Yu Wei(俞炜), Zhang Hongbin(张洪斌) . Polyurethane Industry(聚氨酯工业) , 2018 . 33 ( 3 ): 5 - 9 . DOI:10.3969/j.issn.1005-1902.2018.03.002http://doi.org/10.3969/j.issn.1005-1902.2018.03.002 .
Ye Jianmin(叶建民), Zhang Junhua(张军华) . Polymeric Materials Science and Engineering(高分子材料科学与工程) , 2017 . ( 7 ): 94 - 98.
Song Yuanjun(宋元军), Li Na(李娜) . Chemistry and Adhesion(化学与粘合) , 2010 . 32 ( 2 ): 19 - 21 . DOI:10.3969/j.issn.1001-0017.2010.02.007http://doi.org/10.3969/j.issn.1001-0017.2010.02.007 .
Zhang Li(张莉), Zhao Xiuwen(赵修文), Zhang Liguo(张利国), Li Bo(李博), Zhang Tao(张涛) . Chemical Propellants& Polymeric Materials(化学推进剂与高分子材料) , 2014 . 12 ( 1 ): 41 - 44, 48.
Jiang Tao(蒋涛), Yu Kailun(余恺伦), Zhao Hui(赵辉), Hao Tonghui(郝同辉), Zhang Qunzhao(张群朝) . Journal of Hubei University (Natural Science)(湖北大学学报(自然科学版)) , 2018 . 40 ( 6 ): 106 - 111.
Zhao Tingting(赵婷婷), Wang Jianhua(王建华) . China Synthetic Resin and Plastics(合成树脂及塑料) , 2015 . 32 ( 4 ): 45 - 48 . DOI:10.3969/j.issn.1002-1396.2015.04.011http://doi.org/10.3969/j.issn.1002-1396.2015.04.011 .
Zhao Weiming(赵卫鸣), Zhao Xiuwen(赵修文), Zhang Liguo(张利国), Li Bo(李博), Zhang Tao(张涛), Zhang Li(张莉) . Chemical Propellants & Polymeric Materials(化学推进剂与高分子材料) , 2018 . 16 ( 6 ): 48 - 50.
Qiao Leilei(乔磊磊), Liu Qian(刘倩), Li Huabin(李华斌), Lan Ping(蓝平), Liao Pingan(廖平安) . New Chemical Materials(化工新型材料) , 2016 . ( 6 ): 22 - 24.
Han Baole(韩宝乐), Yu Wenjie(于文杰), Xu Guide(徐归德) . Chemical Propellants & Polymeric Materials(化学推进剂与高分子材料) , 2007 . ( 1 ): 1 - 6 . DOI:10.3969/j.issn.1672-2191.2007.01.001http://doi.org/10.3969/j.issn.1672-2191.2007.01.001 .
Zhou Zhengxin(周正欣), Xu Xiangqing(徐翔青) . Polyurethane Industry(聚氨酯工业) , 1999 . ( 2 ): 9 - 11.
Yao Kejian(姚克俭) . Dawn Chemical(黎明化工) , 1995 . ( 6 ): 13 - 14.
Goods S H, Neuschwanger C L, Henderson C C, Skala D M . J Appl Polym Sci , 1998 . 68 ( 7 ): 1045 - 1055 . DOI:10.1002/(SICI)1097-4628(19980516)68:7<1045::AID-APP2>3.0.CO;2-Fhttp://doi.org/10.1002/(SICI)1097-4628(19980516)68:7<1045::AID-APP2>3.0.CO;2-F .
Saint-Michel F, Chazeau L, Jean-Yves Cavaillé, Chabert, E . Compos Sci Technol , 2006 . 66 ( 15 ): 2700 - 2708 . DOI:10.1016/j.compscitech.2006.03.009http://doi.org/10.1016/j.compscitech.2006.03.009 .
Philip C, Miller T, Sina T . Polym Polym Compos , 1999 . 7 ( 2 ): 117 - 124.
Wang X C, Jing X, Peng Y Y, Ma Z K, Liu C T, Turng L S, Shen C Y . Polym Eng Sci , 2016 . 56 ( 3 ): 319 - 327 . DOI:10.1002/pen.24257http://doi.org/10.1002/pen.24257 .
Wang G L, Wan G P, Chai J L, Li B, Zhao G Q, Mu Y, Park C B. J . Supercrit Fluids , 2019 . 149 127 - 137 . DOI:10.1016/j.supflu.2019.04.004http://doi.org/10.1016/j.supflu.2019.04.004 .
Kumar V, Suh N P . Polym Eng Sci , 1990 . 30 ( 20 ): 1323 - 1329 . DOI:10.1002/pen.760302010http://doi.org/10.1002/pen.760302010 .
Ge C B, Wang S P, Zhai W T . J Cell Plast , 2020 . 56 ( 2 ): 207 - 226 . DOI:10.1177/0021955X19864381http://doi.org/10.1177/0021955X19864381 .
Ge Chengbiao(戈成彪). Microcellular Thermoplastic Polyurethane Foam: Structural Regulation and Performance(微孔热塑性聚氨酯泡沫结构调控与性能研究). Doctoral Dissertation of University of Chinese Academy of Sciences(中国科学院大学(中国科学院宁波材料技术与工程研究所)博士学位论文), 2018
Zhang Huanhuan(张欢欢), Wang Jie(王杰), Huang Gang(黄刚), Zhan Hongjun(占宏君), Shi Tongfei(石彤非),Xu Donghua(许东华), Yao Weiguo(姚卫国) . Acta Polymerica Sinica(高分子学报) , 2016 . ( 10 ): 1447 - 1454 . DOI:10.11777/j.issn1000-3304.2016.16040http://doi.org/10.11777/j.issn1000-3304.2016.16040 .
Shen Q, Xiong Y L, Yuan H, Luo G Q, Liang X, Zhang L M . J Phys: Conf Ser , 2013 . 419 012009 DOI:10.1088/1742-6596/419/1/012009http://doi.org/10.1088/1742-6596/419/1/012009 .
Tang M, Huang G, Zhang H H, Liu Y L, Chang H J, Song H Z, Xu D H, Wang Z G . ACS Omega , 2017 . 2 ( 5 ): 2214 - 2223 . DOI:10.1021/acsomega.7b00242http://doi.org/10.1021/acsomega.7b00242 .
Hilyard, N. C. Low Density Cellular Plastics Physical Basis of Behaviour. London: Chapman and Hall, 1994. 1−20
Chen Y J, Li T, Xu D H, Zhai W T . RSC Adv , 2015 . 5 ( 100 ): 82034 - 82041 . DOI:10.1039/C5RA12515Dhttp://doi.org/10.1039/C5RA12515D .
Wang X C, Zhu Q S, Dong B B, Wu H H, Liu C T, Shen C Y, Turng L S, Geng T . Polym Test , 2019 . 79 106043 DOI:10.1016/j.polymertesting.2019.106043http://doi.org/10.1016/j.polymertesting.2019.106043 .
Progelhof R C, Throne J L . Polym Eng Sci , 1979 . 19 ( 7 ): 493 - 499 . DOI:10.1002/pen.760190706http://doi.org/10.1002/pen.760190706 .
Iremonger M J, Lawler J P . J Appl Polym Sci , 1980 . 25 ( 5 ): 809 - 819 . DOI:10.1002/app.1980.070250509http://doi.org/10.1002/app.1980.070250509 .
Sun X F, Kharbas H, Turng L S . Polym Eng Sci , 2015 . 55 ( 11 ): 2643 - 2652 . DOI:10.1002/pen.24157http://doi.org/10.1002/pen.24157 .
Kreter P E . J Cell Plast , 1985 . 21 306 - 310 . DOI:10.1177/0021955X8502100502http://doi.org/10.1177/0021955X8502100502 .
Hilyard N C. Low Density Cellular Plastics Physical Basis of Behaviour. London: Chapman and Hall, 1994. 11−14, 227−261
0
浏览量
61
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构