浏览全部资源
扫码关注微信
1.中国科学院化学研究所 北京 100190
2.中国科学院大学 北京 100049
[ "赵江,男,1967年生. 分别于1989年、1992年在吉林大学物理系获得学士、硕士学位,1995年于中国科学院物理研究所获得博士学位,之后分别于北京大学化学与分子工程学院、日本产业综合研究所、美国伊利诺伊大学从事博士后研究,2004年起于中国科学院化学研究所任研究员,入选中国科学院“百人计划”,2009年获得国家杰出青年科学基金资助,2013年当选美国物理学会Fellow. 以单分子荧光显微与光谱方法开展关于高分子物理基础性研究,研究方向包括:多电荷大分子、聚合物表界面、高分子动力学、相变与玻璃化转变等" ]
纸质出版日期:2021-3-3,
网络出版日期:2020-12-16,
收稿日期:2020-10-30,
修回日期:2020-11-17,
扫 描 看 全 文
周超, 杨京法, 赵江. 荧光关联光谱在高分子单链研究中的应用[J]. 高分子学报, 2021,52(3):321-334.
Chao Zhou, Jing-fa Yang, Jiang Zhao. Applications of Fluorescence Correlation Spectroscopy in the Study of Single Chains of Polymers[J]. Acta Polymerica Sinica, 2021,52(3):321-334.
周超, 杨京法, 赵江. 荧光关联光谱在高分子单链研究中的应用[J]. 高分子学报, 2021,52(3):321-334. DOI: 10.11777/j.issn1000-3304.2020.20238.
Chao Zhou, Jing-fa Yang, Jiang Zhao. Applications of Fluorescence Correlation Spectroscopy in the Study of Single Chains of Polymers[J]. Acta Polymerica Sinica, 2021,52(3):321-334. DOI: 10.11777/j.issn1000-3304.2020.20238.
荧光关联光谱(fluorescence correlation spectroscopy,FCS)是一项用于研究体系动力学性质的统计光谱技术,随着它被引入材料与化学研究领域,近年来取得了大量全新的研究成果. 该技术在高分子科学研究中也逐渐发挥出越来越大的作用,特别是在聚合物结构和动力学方面,这表明它在高分子领域的巨大潜力. 本文将从FCS的基本原理、实验技巧以及在一些具有挑战性体系中的应用等方面展开,着重介绍它在高分子溶液,如聚电解质溶液、高分子混致不溶现象,以及不同的表界面体系中取得的新成果,展示FCS区别于其他传统技术的特点和优势.
Fluorescence correlation spectroscopy (FCS) is a statistical spectroscopy technique mainly used to study the dynamics of systems under thermal equilibrium. This technique is extremely sensitive and has excellent spatial and temporal resolution
making it very powerful in studying the dynamics of systems under thermal equilibrium
especially measuring translational diffusion of single molecules
in solutions and at interfaces. In recent years
there have been significant contributions of FCS to the investigations in the field of materials and chemistry researches
and a large number of new researches have been successfully conducted. In polymer science
this technology plays increasingly important roles
especially in polymer structure and dynamics. This review will cover many aspects of FCS
including the principles of FCS
the basic theory and the instrumentation of FCS. Experimental skills have also been introduced. Attention is paid to the applications of FCS in a few fields that are challenging to conventional methods such as dynamic scattering. The investigations by FCS have been introduced into polymer solutions
including polyelectrolyte solutions and cononsolvency of neutral polymers
and lateral diffusion of single polymer molecules at surfaces and interfaces
as well as the coupling of translational diffusion among charged macromolecules. It has been demonstrated that due to the extreme sensitivity
the FCS experiments are conducted at extreme dilution
making effective measurements of individual charged molecules and providing important information on the chain conformation and its transition. The advantage of FCS has also been shown to creat long enough time window for single molecule measurements. Under such conditions
diffusion of single polymer molecules can be measured while they are supposed to precipitate under experimental condition of conventional methods. The effectiveness of FCS in studying translational diffusion has also been demonstrated
showing the powerfulness of FCS in multiple dimensional measurements. All of the examples provided in the current review help to highlight the characteristics and advantages of FCS that distinguish it from other traditional technologies. It is believed that FCS can continue to enjoy its effectiveness in a number of fields in polymer researches.
荧光关联光谱高分子聚电解质表界面混致不溶
Fluorescence correlation spectroscopyPolymerPolyelectrolyteSurface and interfaceCononsolvency
Wu C, Zhou S . Phys Rev Lett , 1996 . 77 ( 14 ): 3053 - 3055 . DOI:10.1103/PhysRevLett.77.3053http://doi.org/10.1103/PhysRevLett.77.3053 .
Gao J, Wu C . Macromolecules , 1997 . 30 ( 22 ): 6873 - 6876 . DOI:10.1021/ma9703517http://doi.org/10.1021/ma9703517 .
Liu X B, Luo S K, Ye J, Wu C . Macromolecules , 2012 . 45 ( 11 ): 4830 - 4838 . DOI:10.1021/ma300629dhttp://doi.org/10.1021/ma300629d .
Morishima K, Ishiwari F, Matsumura S, Fukushima T, Shibayama M . Macromolecules , 2017 . 50 ( 15 ): 5940 - 5945 . DOI:10.1021/acs.macromol.7b00883http://doi.org/10.1021/acs.macromol.7b00883 .
Sedlak M, Amis E J . J Chem Phys , 1992 . 96 ( 1 ): 826 - 834 . DOI:10.1063/1.462468http://doi.org/10.1063/1.462468 .
Muthukumar M . Macromolecules , 2017 . 50 ( 24 ): 9528 - 9560 . DOI:10.1021/acs.macromol.7b01929http://doi.org/10.1021/acs.macromol.7b01929 .
Zhou K, Li J, Lu Y, Zhang G, Xie Z, Wu C . Macromolecules , 2009 . 42 ( 18 ): 7146 - 7154 . DOI:10.1021/ma900541xhttp://doi.org/10.1021/ma900541x .
Hao J, Cheng H, Butler P, Zhang L, Han C C . J Chem Phys , 2010 . 132 ( 15 ): 154902 DOI:10.1063/1.3381177http://doi.org/10.1063/1.3381177 .
Magde D, Webb W W, Elson E . Phys Rev Lett , 1972 . 29 ( 11 ): 705 - 708 . DOI:10.1103/PhysRevLett.29.705http://doi.org/10.1103/PhysRevLett.29.705 .
Elson E L, Magde D . Biopolymers , 1974 . 13 ( 1 ): 1 - 27 . DOI:10.1002/bip.1974.360130102http://doi.org/10.1002/bip.1974.360130102 .
Magde D, Elson E L, Webb W W . Biopolymers , 1974 . 13 ( 1 ): 29 - 61 . DOI:10.1002/bip.1974.360130103http://doi.org/10.1002/bip.1974.360130103 .
Rigler R, Mets U, Widengren J, Kask P . Eur Biophys J Biophy , 1993 . 22 ( 3 ): 169 - 175.
Dross N, Spriet C, Zwerger M, Muller G, Waldeck W, Langowski J . PLoS One , 2009 . 4 ( 4 ): e5041 DOI:10.1371/journal.pone.0005041http://doi.org/10.1371/journal.pone.0005041 .
Mtze J, Ohrt T, Schwille P . Laser Photonics Rev , 2011 . 5 ( 1 ): 52 - 67 . DOI:10.1002/lpor.200910041http://doi.org/10.1002/lpor.200910041 .
Schwille P, Haupts U, Maiti S, Webb W W . Biophys J , 1999 . 77 ( 4 ): 2251 - 2265 . DOI:10.1016/S0006-3495(99)77065-7http://doi.org/10.1016/S0006-3495(99)77065-7 .
Xie J, Nakai K, Ohno S, Butt H J, Koynov K, Yusa S . Macromolecules , 2015 . 48 ( 19 ): 7237 - 7244 . DOI:10.1021/acs.macromol.5b01435http://doi.org/10.1021/acs.macromol.5b01435 .
Caruso F, Donath E, Mohwald H . J Phys Chem B , 1998 . 102 ( 11 ): 2011 - 2016 . DOI:10.1021/jp980198yhttp://doi.org/10.1021/jp980198y .
Vagias A, Raccis R, Koynov K, Jonas U, Butt H J, Fytas G, Kosovan P, Lenz O, Holm C . Phys Rev Lett , 2013 . 111 ( 8 ): 088301 DOI:10.1103/PhysRevLett.111.088301http://doi.org/10.1103/PhysRevLett.111.088301 .
Lumma D, Keller S, Vilgis T, Radler J O . Phys Rev Lett , 2003 . 90 ( 21 ): 218301 DOI:10.1103/PhysRevLett.90.218301http://doi.org/10.1103/PhysRevLett.90.218301 .
Cherdhirankorn T, Best A, Koynov K, Peneva K, Muellen K, Fytas G . J Phys Chem B , 2009 . 113 ( 11 ): 3355 - 3359 . DOI:10.1021/jp809707yhttp://doi.org/10.1021/jp809707y .
Schaeffel D, Yordanov S, Staff R H, Kreyes A, Zhao Y, Schmidt M, Landfester K, Hofkens J, Butt H J, Crespy D, Koynov K . ACS Macro Lett , 2015 . 4 ( 2 ): 171 - 176 . DOI:10.1021/mz500638ehttp://doi.org/10.1021/mz500638e .
Jee A Y, Cho Y K, Granick S, Tlusty T . P Natl Acad Sci USA , 2018 . 115 ( 46 ): E10812 DOI:10.1073/pnas.1814180115http://doi.org/10.1073/pnas.1814180115 .
Jee A Y, Dutta S, Cho Y K, Tlusty T, Granick S . P Natl Acad Sci USA , 2018 . 115 ( 1 ):14 - 18 . DOI:10.1073/pnas.1717844115http://doi.org/10.1073/pnas.1717844115 .
Cherdhirankorn T, Floudas G, Butt H J, Koynov K . Macromolecules , 2009 . 42 ( 22 ): 9183 - 9189 . DOI:10.1021/ma901439uhttp://doi.org/10.1021/ma901439u .
Cherdhirankorn T, Harmandaris V, Juhari A, Voudouris P, Fytas G, Kremer K, Koynov K . Macromolecules , 2009 . 42 ( 13 ): 4858 - 4866 . DOI:10.1021/ma900605zhttp://doi.org/10.1021/ma900605z .
Doroshenko M, Gonzales M, Best A, Butt H J, Koynov K, Floudas G . Macromol Rapid Commun , 2012 . 33 ( 18 ): 1568 - 1573 . DOI:10.1002/marc.201200322http://doi.org/10.1002/marc.201200322 .
Michelman-Ribeiro A, Boukari H, Nossal R, Horkay F . Macromolecules , 2004 . 37 ( 26 ): 10212 - 10214 . DOI:10.1021/ma048043dhttp://doi.org/10.1021/ma048043d .
Zustiak S P, Boukari H, Leach J B . Soft Matter , 2010 . 6 ( 15 ): 3609 - 3618 . DOI:10.1039/c0sm00111bhttp://doi.org/10.1039/c0sm00111b .
Modesti G, Zimmermann B, Borsch M, Herrmann A, Saalwachter K . Macromolecules , 2009 . 42 ( 13 ): 4681 - 4689 . DOI:10.1021/ma900614jhttp://doi.org/10.1021/ma900614j .
Sukhishvili S A, Chen Y, Muller J D, Gratton E, Schweizer K S, Granick S . Nature , 2000 . 406 ( 6792 ): 146 DOI:10.1038/35018166http://doi.org/10.1038/35018166 .
Zhao J, Granick S . Macromolecules , 2007 . 40 ( 4 ): 1243 - 1247 . DOI:10.1021/ma062104lhttp://doi.org/10.1021/ma062104l .
Zhao J, Granick S . J Am Chem Soc , 2004 . 126 ( 20 ): 6242 - 6243 . DOI:10.1021/ja0493749http://doi.org/10.1021/ja0493749 .
Ries J, Schwille P . Bioessays , 2012 . 34 ( 5 ): 361 - 368 . DOI:10.1002/bies.201100111http://doi.org/10.1002/bies.201100111 .
Elson E L . Methods Enzymol , 2013 . 518 1 - 10 . DOI:10.1016/B978-0-12-388422-0.00001-7http://doi.org/10.1016/B978-0-12-388422-0.00001-7 .
Papadakis C M, Kosovan P, Richtering W, Woll D . Colloid Polym Sci , 2014 . 292 ( 10 ): 2399 - 2411 . DOI:10.1007/s00396-014-3374-xhttp://doi.org/10.1007/s00396-014-3374-x .
Wang F, Shi Y, Luo S J, Chen Y M, Zhao J . Macromolecules , 2012 . 45 ( 22 ): 9196 - 9204 . DOI:10.1021/ma301780fhttp://doi.org/10.1021/ma301780f .
Zheng Kaikai(郑锴锴). Dynamics of a Single Polymer Chain under Shear(剪切场下聚合物分子单链动力学行为研究). Doctoral Dissertation of University of Chinese Acdemy of Sciences((中国科学院大学博士学位论文), 2018.
Wang S, Zhao J . J Chem Phys , 2007 . 126 ( 9 ): 091104 DOI:10.1063/1.2711804http://doi.org/10.1063/1.2711804 .
Xu G, Luo S, Yang Q, Yang J, Zhao J . J Chem Phys , 2016 . 145 ( 14 ): 144903 DOI:10.1063/1.4964649http://doi.org/10.1063/1.4964649 .
Xu G, Yang J, Zhao J . J Chem Phys , 2018 . 149 ( 16 ): 163329 DOI:10.1063/1.5035458http://doi.org/10.1063/1.5035458 .
Ren W, Zheng K, Liao C, Yang J, Zhao J . Phys Chem Chem Phys , 2018 . 20 ( 2 ): 916 - 924 . DOI:10.1039/C7CP06235Dhttp://doi.org/10.1039/C7CP06235D .
Luo S J, Jiang X B, Zou L, Wang F, Yang J F, Chen Y M, Zhao J . Macromolecules , 2013 . 46 ( 8 ): 3132 - 3136 . DOI:10.1021/ma302276bhttp://doi.org/10.1021/ma302276b .
Luo Shuangjiang(罗双江), Gao Peiyuan(高培源), Guo Hongxia(郭洪霞), Yang Jingfa(杨京法), Zhao Jiang(赵江) . Acta Polymerica Sinica(高分子学报) , 2017 . ( 9 ): 1479 - 1487 . DOI:10.11777/j.issn1000-3304.2017.17065http://doi.org/10.11777/j.issn1000-3304.2017.17065 .
Jia P, Yang Q, Gong Y, Zhao J . J Chem Phys , 2012 . 136 ( 8 ): 084904 DOI:10.1063/1.3688082http://doi.org/10.1063/1.3688082 .
Ye S, Tang Q, Yang J, Zhang K, Zhao J . Soft Matter , 2016 . 12 ( 47 ): 9520 - 9526 . DOI:10.1039/C6SM02103Dhttp://doi.org/10.1039/C6SM02103D .
Yang Q, Zhao J . Langmuir , 2011 . 27 ( 19 ): 11757 - 11760 . DOI:10.1021/la202510dhttp://doi.org/10.1021/la202510d .
Yang J F, Zhao J, Han C C . Macromolecules , 2008 . 41 ( 20 ): 7284 - 7286 . DOI:10.1021/ma8015135http://doi.org/10.1021/ma8015135 .
Li Z, Yang J F, Hollingsworth J V, Zhao J . RSC Adv , 2020 . 10 ( 28 ): 16565 - 16569 . DOI:10.1039/D0RA02630Ahttp://doi.org/10.1039/D0RA02630A .
Oosawa F. Polyelectrolytes. New York: Marcel Dekker, 1971
Dobrynin A V, Rubinstein M . Prog Polym Sci , 2005 . 30 ( 11 ): 1049 - 1118 . DOI:10.1016/j.progpolymsci.2005.07.006http://doi.org/10.1016/j.progpolymsci.2005.07.006 .
Forster S, Schmidt M, Antonietti M . Polymer , 1990 . 31 ( 5 ): 781 - 792 . DOI:10.1016/0032-3861(90)90036-Xhttp://doi.org/10.1016/0032-3861(90)90036-X .
Fuoss R M . J Polym Sci , 1948 . 3 ( 4 ): 603 - 604 . DOI:10.1002/pol.1948.120030414http://doi.org/10.1002/pol.1948.120030414 .
Muthukumar M . J Chem Phys , 2004 . 120 ( 19 ): 9343 - 9350 . DOI:10.1063/1.1701839http://doi.org/10.1063/1.1701839 .
Mattoussi H, Karasz F E, Langley K H . J Chem Phys , 1990 . 93 ( 5 ): 3593 - 3603 . DOI:10.1063/1.458791http://doi.org/10.1063/1.458791 .
Reed W F, Ghosh S, Medjahdi G, Francois J . Macromolecules , 1991 . 24 ( 23 ): 6189 - 6198 . DOI:10.1021/ma00023a021http://doi.org/10.1021/ma00023a021 .
Li J, Li W, Huo H, Luo S, Wu C . Macromolecules , 2008 . 41 ( 3 ): 901 - 911 . DOI:10.1021/ma071284bhttp://doi.org/10.1021/ma071284b .
Manning G S . J Chem Phys , 1969 . 51 ( 3 ): 924 - 933 . DOI:10.1063/1.1672157http://doi.org/10.1063/1.1672157 .
Manning G S . J Chem Phys , 1969 . 51 ( 3 ): 934 - 938 . DOI:10.1063/1.1672158http://doi.org/10.1063/1.1672158 .
Manning G S . J Chem Phys , 1969 . 51 ( 8 ): 3249 - 3252 . DOI:10.1063/1.1672502http://doi.org/10.1063/1.1672502 .
Manning G S . Biophys Chem , 1977 . 7 ( 2 ): 95 - 102 . DOI:10.1016/0301-4622(77)80002-1http://doi.org/10.1016/0301-4622(77)80002-1 .
Schild H G, Muthukumar M, Tirrell D A . Macromolecules , 1991 . 24 ( 4 ): 948 - 952 . DOI:10.1021/ma00004a022http://doi.org/10.1021/ma00004a022 .
Winnik F M, Ringsdorf H, Venzmer J . Macromolecules , 1990 . 23 ( 8 ): 2415 - 2416 . DOI:10.1021/ma00210a048http://doi.org/10.1021/ma00210a048 .
Chee C K, Hunt B J, Rimmer S, Soutar I, Swanson L . Soft Matter , 2011 . 7 ( 3 ): 1176 - 1184 .DOI:10.1039/C0SM00836Bhttp://doi.org/10.1039/C0SM00836B .
Zhang G Z, Wu C . J Am Chem Soc , 2001 . 123 ( 7 ): 1376 - 1380 . DOI:10.1021/ja003889shttp://doi.org/10.1021/ja003889s .
Tanaka F, Koga T, Kojima H, Xue N, Winnik F M . Macromolecules , 2011 . 44 ( 8 ): 2978 - 2989 . DOI:10.1021/ma102695nhttp://doi.org/10.1021/ma102695n .
Kojima H, Tanaka F . Soft Matter , 2012 . 8 ( 10 ): 3010 - 3020 . DOI:10.1039/c2sm06883dhttp://doi.org/10.1039/c2sm06883d .
Grabowski C A, Mukhopadhyay A . Phys Rev Lett , 2007 . 98 ( 20 ): 207801 DOI:10.1103/PhysRevLett.98.207801http://doi.org/10.1103/PhysRevLett.98.207801 .
Fleer G J . Adv Colloid Interface Sci , 2010 . 159 ( 2 ): 99 - 116 . DOI:10.1016/j.cis.2010.04.004http://doi.org/10.1016/j.cis.2010.04.004 .
Granick S, Bae S C . J Polym Sci, Part B: Polym Phys , 2006 . 44 ( 24 ): 3434 - 3435 . DOI:10.1002/polb.21004http://doi.org/10.1002/polb.21004 .
Granick S, Kumar S K, Amis E J, Antonietti M, Balazs A C, Chakraborty A K, Grest G S, Hwaker C J, Janmey P, Kramer E J, Nuzzo R, Russell T P, Safinya C R . J Polym Sci, Part B: Polym Phys , 2003 . 41 ( 22 ): 2755 - 2793 . DOI:10.1002/polb.10669http://doi.org/10.1002/polb.10669 .
Guo Z Y, Cao X L, Guo L L, Zhao Z Y, Ma B D, Zhang L, Zhang L, Zhao S . J Dispersion Sci Technol , 2020 . Doi:10.1080/01932691.2020.1725543 DOI:10.1080/01932691.2020.1725543http://doi.org/10.1080/01932691.2020.1725543 .
Skaug M J, Mabry J N, Schwartz D K . J Am Chem Soc , 2014 . 136 ( 4 ): 1327 - 1332 . DOI:10.1021/ja407396vhttp://doi.org/10.1021/ja407396v .
Walder R, Nelson N, Schwartz D K . Phys Rev Lett , 2011 . 107 ( 15 ): 156102 DOI:10.1103/PhysRevLett.107.156102http://doi.org/10.1103/PhysRevLett.107.156102 .
Dong C, Ren J . Electrophoresis , 2014 . 35 ( 16 ): 2267 - 2278 . DOI:10.1002/elps.201300648http://doi.org/10.1002/elps.201300648 .
Wang S Q, Chang H C, Zhu Y X . Macromolecules , 2010 . 43 ( 18 ): 7402 - 7405 . DOI:10.1021/ma101571shttp://doi.org/10.1021/ma101571s .
Schwille P, Meyer-Almes F J, Rigler R . Biophys J , 1997 . 72 ( 4 ): 1878 - 1886 . DOI:10.1016/S0006-3495(97)78833-7http://doi.org/10.1016/S0006-3495(97)78833-7 .
Schaeffel D, Staff R H, Butt H J, Landfester K, Crespy D, Koynov K . Nano Lett , 2012 . 12 ( 11 ): 6012 - 6017 . DOI:10.1021/nl303581qhttp://doi.org/10.1021/nl303581q .
Goossens K, Prior M, Pacheco V, Willbold D, Mullen K, Enderlein J, Hofkens J, Gregor I . ACS Nano , 2015 . 9 ( 7 ): 7360 - 7373 . DOI:10.1021/acsnano.5b02371http://doi.org/10.1021/acsnano.5b02371 .
Muller C B, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W, Enderlein J . Epl , 2008 . 83 ( 4 ): 46001 .
Price E S, Aleksiejew M, Johnson C K . J Phys Chem B , 2011 . 115 ( 29 ): 9320 - 9326 . DOI:10.1021/jp203743mhttp://doi.org/10.1021/jp203743m .
Torres T, Levitus M . J Phys Chem B , 2007 . 111 ( 25 ): 7392 - 7400 . DOI:10.1021/jp070659shttp://doi.org/10.1021/jp070659s .
Masuda A, Ushida K, Okamoto T . J Photoch Photobio A , 2006 . 183 ( 3 ): 304 - 308 . DOI:10.1016/j.jphotochem.2006.06.040http://doi.org/10.1016/j.jphotochem.2006.06.040 .
Chen K, Zheng K K, Xu G F, Yang J F, Zhao J . Macromolecules , 2019 . 52 ( 10 ): 3925 - 3934 . DOI:10.1021/acs.macromol.9b00025http://doi.org/10.1021/acs.macromol.9b00025 .
0
浏览量
238
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构