浏览全部资源
扫码关注微信
1.中国科学院高能物理研究所 中国散裂中子源 2.散裂中子源科学中心 东莞 523803
2.中国科学院大学 北京 100049
3.University of Chinese Academy of Sciences, Beijing 100049
[ "程贺,男,1978年生. 中国科学院高能物理研究所东莞研究部研究员. 1996年考取中国科学技术大学,2006年在吴奇教授课题组获得博士学位. 随后赴中国科学院化学研究所韩志超研究员课题组工作,建设我国第一台SANS(2012年国家验收). 2014年加入中国散裂中子源,中国科学院高能物理研究所东莞研究部,现正在主持建设世界上第二台基于散裂中子源的VSANS. 致力于使用和发展散射方法,研究软物质多相多尺度结构和动态学行为." ]
纸质出版日期:2021-09-20,
网络出版日期:2021-06-03,
收稿日期:2020-11-04,
修回日期:2020-12-22,
扫 描 看 全 文
左太森,马长利,韩泽华等.小角中子散射技术及其在大分子结构表征中的应用[J].高分子学报,2021,52(09):1192-1205.
Zuo Tai-sen,Ma Chang-li,Han Ze-hua,et al.The Basic Principle of Small Angle Neutron Scattering and Its Application in Macromolecules[J].ACTA POLYMERICA SINICA,2021,52(09):1192-1205.
左太森,马长利,韩泽华等.小角中子散射技术及其在大分子结构表征中的应用[J].高分子学报,2021,52(09):1192-1205. DOI: 10.11777/j.issn1000-3304.2020.20242.
Zuo Tai-sen,Ma Chang-li,Han Ze-hua,et al.The Basic Principle of Small Angle Neutron Scattering and Its Application in Macromolecules[J].ACTA POLYMERICA SINICA,2021,52(09):1192-1205. DOI: 10.11777/j.issn1000-3304.2020.20242.
小角中子散射(SANS)是一种表征从纳米到微米尺寸物质特征结构的有力工具,配合中子的强穿透性和同位素辨识等特性,在软物质大分子结构表征方面发挥着独特的作用. 随着中国散裂中子源(CSNS)在2018年正式对外接受机时申请,国内SANS用户群逐年扩大. 本文首先简要介绍小角中子散射技术的基本原理、谱仪结构和实验技巧,然后紧扣小角谱仪的特点和方法学方面的最新进展,介绍小角中子散射在高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料、生物大分子等研究领域的结构表征方面的典型应用. 小角中子散射和其他表征手段,如小角X射线散射(SAXS)相互紧密配合和补充,成为连接大分子内部多相多尺度的微观结构和宏观性能的桥梁.
Small angle neutron scattering (SANS) is a powerful tool to characterize multi-scale structures in macromolecules. Deep penetration and H/D isotope labeling make it a unique scattering method. To make it more familiar to the users
basic principle of SANS
instrumentation and experimental skills were firstly demonstrated. Then typical applications in the fields of polymer solution
polymer blends
nanocomposites
crystallization
gels
porous materials and biomacromolecules were introduced. As for the data analysis of complex systems
such as biomacromolecules
in addition to the traditional data analysis methods
advanced methods such as the ab initial analysis and Reverse Monte-Carlo (RMC) simulations provide more detailed information. Combine with small angle X-ray scattering (SAXS)
static light scattering (SLS)
electron microscope (EM)
et al
.
SANS enables us to solve the structure and interaction of more complicated systems such as interaction of biomacromolecues and solvation of polymers in mixed solutions. As the China Spallation Neutron Source (CSNS) was officially opened to the users around the world in 2018 and SANS instruments equipped with various sample environments are being built
more opportunities are opened to the SANS communities domestically and abroad.
小角中子散射大分子多相多尺度结构表征中国散裂中子源
Small angle neutron scatteringMacromoleculesMulti-scale and multi-phaseStructure characterizationChina spallation neutron source
Borsali R, Pecora R. Soft-Mattter Characterization. Springer, 2008. 377-952. doi:10.1007/978-1-4020-4465-6http://dx.doi.org/10.1007/978-1-4020-4465-6
Cebe P, Hsiao B S, Lohse D J. Scattering from Polymers Characterization by X-rays, Neutrons, and Light. Washington DC: American Chemistry Society, 2000. 1-116. doi:10.1021/bk-2000-0739http://dx.doi.org/10.1021/bk-2000-0739
Roe R J. Methods of X-ray and Neutron Scattering in Polymer Science. Oxford: Oxford University Press, 2000. 1-80. doi:10.1016/b978-0-08-050612-8.50008-8http://dx.doi.org/10.1016/b978-0-08-050612-8.50008-8
Feigin L A, Svergun D I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering. New York and London:Plenum Press, 1987. 275-320. doi:10.1007/978-1-4757-6624-0http://dx.doi.org/10.1007/978-1-4757-6624-0
Dianoux A J, Lander G. Neutron Data Booklet Second Edition (July 2003). 2020-10-25. https://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/Documentation/NeutronDataBooklet.pdfhttps://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/Documentation/NeutronDataBooklet.pdf
National Nuclear Data Center. Evaluated Nuclear Data File (ENDF). 2020-10-25. https://www.nndc.bnl.gov/exfor/endf00.jsphttps://www.nndc.bnl.gov/exfor/endf00.jsp
Zuo T S, Cheng H, Chen Y B, Wang F W. Chinese Phys C, 2016, 40(7): 76204. doi:10.1088/1674-1137/40/7/076204http://dx.doi.org/10.1088/1674-1137/40/7/076204
Carpenter J M, Agamalian M. J Phys: Conference Series, 2010, 251: 012056. doi:10.1088/1742-6596/251/1/012056http://dx.doi.org/10.1088/1742-6596/251/1/012056
Han Z, Zuo T, Ma C, Cheng H. Instrum Sci Technol, 2019, 47: 448-465. doi:10.1080/10739149.2019.1597733http://dx.doi.org/10.1080/10739149.2019.1597733
Zhang H, Cheng H, Yuan G, Han C C, Zhang L, Li T, Wang H, Liu Y T, Chen D. Nucl Instrum Meth A 2014, 735: 490-495. doi:10.1016/j.nima.2013.09.065http://dx.doi.org/10.1016/j.nima.2013.09.065
Anderson K. Reactor & Spallation Neutron Sources. Oxford: Oxford School of Neutron Scattering, 2013. 55-76
Higgins J S, Benoît H C. Polymers and Neutron Scattering. Oxford: Clarendon Press, 1994. 86-95
Rehm C, Barker J, Bouwman W G, Pynn R. J Appl Crystallogr, 2013, 46(2): 354-364. doi:10.1107/s0021889812050029http://dx.doi.org/10.1107/s0021889812050029
Du R, Tian H L, Zuo T S, Tang M, Yan L, Zhang J R. Instrum Sci Technol, 2017, 45(5): 541-557. doi:10.1080/10739149.2016.1278229http://dx.doi.org/10.1080/10739149.2016.1278229
Hammouda B. Probing Nanoscale Structures-The SANS Toolbox. Gaithersburg: National Institute of Standards and Technology Center for Neutron Research, 2010. 31-191. doi:10.17226/13012http://dx.doi.org/10.17226/13012
Kline S. J Appl Crystallogr, 2006, 39(6): 895-900. doi:10.1107/s0021889806035059http://dx.doi.org/10.1107/s0021889806035059
Butler P, Doucet M, Jackson A, King S. SasView for Small Angle Scattering Analysis (July 2020). 2020-10-25. https://www.sasview.org/https://www.sasview.org/
Konarev P V, Svergun D I. IUCrJ, 2018, 5(Pt 4): 402-409. doi:10.1107/s2052252518005900http://dx.doi.org/10.1107/s2052252518005900
Petoukhov M V, Svergun D I. Acta Crystallogr D Biol Crystallogr, 2015, 71(Pt 5): 1051-1058. doi:10.1107/s1399004715002576http://dx.doi.org/10.1107/s1399004715002576
Volkov V, Svergun D. J Appl Crystallogr, 2003, 36: 860-864. doi:10.1107/s0021889803000268http://dx.doi.org/10.1107/s0021889803000268
Gereben O, Pusztai L, McGreevy R L. J Phys Condens Matter, 2010, 22(40): 404216. doi:10.1088/0953-8984/22/40/404216http://dx.doi.org/10.1088/0953-8984/22/40/404216
Li Z, Cheng H, Li J, Hao J, Zhang L, Hammouda B, Han C C. J Phys Chem B, 2011, 115(24): 7887-7895. doi:10.1021/jp203777ghttp://dx.doi.org/10.1021/jp203777g
Hu W T, Yang H, He C, Hu H Q. Chinese J Polym Sci, 2017, 35(9): 1156-1164. doi:10.1007/s10118-017-1969-7http://dx.doi.org/10.1007/s10118-017-1969-7
Cotton J P, Decker D, Benoit H, Farnoux B, Higgins J, Jannink G, Ober R, Picot C, des Cloizeaux J. Macromolecules, 1974, 7(6): 863-872. doi:10.1021/ma60042a033http://dx.doi.org/10.1021/ma60042a033
Goossen S, Bras A R, Pyckhout-Hintzen W, Wischnewski A, Richter D, Rubinstein M, Roovers J, Lutz P J, Jeong Y, Chang T, Vlassopoulos D. Macromolecules, 2015, 48(5): 1598-1605
Hao J, Cheng H, Butler P, Zhang L, Han C C. J Chem Phys, 2010, 132(15): 154902. doi:10.1063/1.3381177http://dx.doi.org/10.1063/1.3381177
Hore M J A, Hammouda B, Li Y, Cheng H. Macromolecules, 2013, 46(19): 7894-7901. doi:10.1021/ma401665hhttp://dx.doi.org/10.1021/ma401665h
Jia D, Muthukumar M, Cheng H, Han C C, Hammouda B. Macromolecules, 2017, 50(18): 7291-7298. doi:10.1021/acs.macromol.7b01502http://dx.doi.org/10.1021/acs.macromol.7b01502
Cheng H, Wu C, Winnik M A. Macromolecules, 2004, 37(13): 5127-5129. doi:10.1021/ma0496201http://dx.doi.org/10.1021/ma0496201
Hammouda B, Jia D, Cheng H. OAJoST, 2015, 3: 101152. doi:10.11131/2015/101152http://dx.doi.org/10.11131/2015/101152
Datta S, Kato Y, Higashiharaguchi S, Aratsu K, Isobe A, Saito T, Prabhu D D, Kitamoto Y, Hollamby M J, Smith A J, Dagleish R, Mahmoudi N, Pesce L, Perego C, Pavan G M, Yagai S. Nature, 2020, 583(7816): 400-405. doi:10.1038/s41586-020-2445-zhttp://dx.doi.org/10.1038/s41586-020-2445-z
Zhang H V, Polzer F, Haider M J, Tian Y, Villegas J A, Kiick K L, Pochan D J, Saven J G. Sci Adv, 2016, 2(9): e1600307. doi:10.1126/sciadv.1600307http://dx.doi.org/10.1126/sciadv.1600307
Wang Z, Faraone A, Yin P, Porcar L, Liu Y, Do C, Hong K, Chen W R. ACS Macro Lett, 2019, 8(11): 1467-1473. doi:10.1021/acsmacrolett.9b00617http://dx.doi.org/10.1021/acsmacrolett.9b00617
Sternhagen G L, Gupta S, Zhang Y, John V, Schneider G J, Zhang D. J Am Chem Soc, 2018, 140(11): 4100-4109. doi:10.1021/jacs.8b00461http://dx.doi.org/10.1021/jacs.8b00461
Zuo T, Ma C, Jiao G, Han Z, Xiao S, Liang H, Hong L, Bowron D, Soper A, Han C C, Cheng H. Macromolecules, 2019, 52(2): 457-464. doi:10.1021/acs.macromol.8b02196http://dx.doi.org/10.1021/acs.macromol.8b02196
Balsara N P, Lin C, Hammouda B. Phys Rev Lett, 1996, 77(18): 3847-3850. doi:10.1103/physrevlett.77.3847http://dx.doi.org/10.1103/physrevlett.77.3847
Liu D, Song L, Song H, Chen J, Tian Q, Chen L, Sun L, Lu A, Huang C, Sun G. Compos Sci Technol, 2018, 165: 373-379. doi:10.1016/j.compscitech.2018.07.024http://dx.doi.org/10.1016/j.compscitech.2018.07.024
Liu D, Chen J, Song L, Lu A, Wang Y, Sun G. Polymer, 2017, 120: 155-163. doi:10.1016/j.polymer.2017.05.064http://dx.doi.org/10.1016/j.polymer.2017.05.064
Staropoli M, Raba A, Hövelmann C H, Krutyeva M, Allgaier J, Appavou M S, Keiderling U, Stadler F J, Pyckhout-Hintzen W, Wischnewski A, Richter D. Macromolecules, 2016, 49(15): 5692-5703. doi:10.1021/acs.macromol.6b00978http://dx.doi.org/10.1021/acs.macromol.6b00978
Sadler D M, Keller A. Macromolecules, 1977, 10(5): 1128-1140. doi:10.1021/ma60059a045http://dx.doi.org/10.1021/ma60059a045
Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield J A. Science, 2007, 316(5827): 1014. doi:10.1126/science.1140132http://dx.doi.org/10.1126/science.1140132
Shibayama M, Li X, Sakai T. Colloid Polym Sci, 2018, 297: 1-12. doi:10.1007/s00396-018-4423-7http://dx.doi.org/10.1007/s00396-018-4423-7
Gao J, Tang C, Elsawy M A, Smith A M, Miller A F, Saiani A. Biomacromolecules, 2017, 18(3): 826-834. doi:10.1021/acs.biomac.6b01693http://dx.doi.org/10.1021/acs.biomac.6b01693
Srivastava S, Andreev M, Levi A E, Goldfeld D J, Mao J, Heller W T, Prabhu V M, de Pablo J J, Tirrell M V. Nat Commun, 2017, 8: 14131. doi:10.1038/ncomms14131http://dx.doi.org/10.1038/ncomms14131
Nishi K, Fujii K, Katsumoto Y, Sakai T, Shibayama M. Macromolecules, 2014, 47(10): 3274-3281. doi:10.1021/ma500662jhttp://dx.doi.org/10.1021/ma500662j
Endo F, Kurokawa N, Tanimoto K, Iwase H, Maeda T, Hotta A. Soft Matter, 2019, 15(27): 5521-5528. doi:10.1039/c9sm00582jhttp://dx.doi.org/10.1039/c9sm00582j
Yang R, He S, Hu Q, Sun M, Hu D, Yi J. Fuel, 2017, 197: 91-99. doi:10.1016/j.fuel.2017.02.005http://dx.doi.org/10.1016/j.fuel.2017.02.005
Sun M, Yu B, Hu Q, Zhang Y, Li B, Yang R, Melnichenko Y B, Cheng G. Int J Coal Geology, 2017, 171: 61-68. doi:10.1016/j.coal.2016.12.004http://dx.doi.org/10.1016/j.coal.2016.12.004
Jafta C J, Petzold A, Risse S, Clemens D, Wallacher D, Goerigk G, Ballauff M. Carbon, 2017, 123: 440-447. doi:10.1016/j.carbon.2017.07.046http://dx.doi.org/10.1016/j.carbon.2017.07.046
Melgar D, Zhou Q, Chakraborty S, Porcar L, Weinstock I A, Ávalos J B, Wu B, Bo C, Yin P. J Phys Chem C, 2020, 124(18): 10201-10208. doi:10.1021/acs.jpcc.0c01019http://dx.doi.org/10.1021/acs.jpcc.0c01019
Bahadur J, Melnichenko Y B, He L, Contescu C I, Gallego N C, Carmichael J R. Carbon, 2015, 95: 535-544. doi:10.1016/j.carbon.2015.08.010http://dx.doi.org/10.1016/j.carbon.2015.08.010
Shi Ce(史册), Li Yunqi(李云琦). Acta Polymerica Sinica(高分子学报), 2015, (8): 871-883
Fitter J, Gutberlet T, Katsaras J. Neutron Scattering in Biology: Techniques and Applications. Berlin Heidelberg and New York: Springer, 2006. doi:10.1007/3-540-29111-3http://dx.doi.org/10.1007/3-540-29111-3
Jacques D A, Trewhella J. Protein Sci, 2010, 19(4): 642-657. doi:10.1002/pro.351http://dx.doi.org/10.1002/pro.351
Koruza K, Lafumat B, ÁVégvári, Knecht W, Fisher S Z. Arch Biochem Biophys, 2018, 645: 26-33. doi:10.1016/j.abb.2018.03.008http://dx.doi.org/10.1016/j.abb.2018.03.008
Petoukhov M V, Svergun D I. Curr Opin Struct Biol, 2007, 17(5): 562-571. doi:10.1016/j.sbi.2007.06.009http://dx.doi.org/10.1016/j.sbi.2007.06.009
Ma Chang-li(马长利), Cheng He(程贺), Zuo Taisen(左太森), Jiao Guisheng(焦贵省), Han Zehua(韩泽华), Qin Hong(秦虹). Chinese Journal of Chemical Physics(化学物理学报), 2020, 33(6s): 727-732. doi:10.1063/1674-0068/cjcp2005077http://dx.doi.org/10.1063/1674-0068/cjcp2005077
Jiao G, Zuo T, Ma C, Han Z, Zhang J, Chen Y, Zhao J, Cheng H, Han C C. Macromolecules, 2020, 53(13): 5140-5146. doi:10.1021/acs.macromol.0c00788http://dx.doi.org/10.1021/acs.macromol.0c00788
Petoukhov M V, Svergun D I. Eur Biophys J, 2006, 35(7): 567-576. doi:10.1007/s00249-006-0063-9http://dx.doi.org/10.1007/s00249-006-0063-9
Shrestha U R, Juneja P, Zhang Q, Gurumoorthy V, Borreguero J M, Urban V, Cheng X, Pingali S V, Smith J C, O’Neill H M, Petridis L. Proc Natl Acad Sci, 2019, 116(41): 20446-20452. doi:10.1073/pnas.1907251116http://dx.doi.org/10.1073/pnas.1907251116
Han C C, Akcasu A Z. Scattering and Dynamics of Polymers: Seeking Order in Disordered Systems. Singapore: John Wiley & Sons (Asia) Pte Ltd, 2011. 1-98. doi:10.1002/9780470824849http://dx.doi.org/10.1002/9780470824849
Zemb T, NeutronLindner P. X-rays and Light. Scattering Methods Applied to Soft Condensed Matter. Amsterdam: Elsevier, 2002. 1-552. doi:10.1016/s1369-7021(02)01143-4http://dx.doi.org/10.1016/s1369-7021(02)01143-4
0
浏览量
644
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构