浏览全部资源
扫码关注微信
深圳大学材料学院 深圳 518055
[ "陈光明,男,1973年生. 深圳大学特聘教授,博士生导师. 2000年于中国科学院化学研究所获博士学位. 2017年当选英国皇家化学会会士. 近年来主要从事聚合物及其复合热电材料与柔性器件方面的研究" ]
纸质出版日期:2021-4-3,
网络出版日期:2020-12-14,
收稿日期:2020-11-4,
修回日期:2020-11-19,
扫 描 看 全 文
黄轩, 刘卓鑫, 刘福生, 陈光明. 聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐热电性能的提升策略研究进展[J]. 高分子学报, 2021,52(4):339-349.
Xuan Huang, Zhuo-xin Liu, Fu-sheng Liu, Guang-ming Chen. Progress of Strategies for Improving Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)[J]. Acta Polymerica Sinica, 2021,52(4):339-349.
黄轩, 刘卓鑫, 刘福生, 陈光明. 聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐热电性能的提升策略研究进展[J]. 高分子学报, 2021,52(4):339-349. DOI: 10.11777/j.issn1000-3304.2020.20245.
Xuan Huang, Zhuo-xin Liu, Fu-sheng Liu, Guang-ming Chen. Progress of Strategies for Improving Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)[J]. Acta Polymerica Sinica, 2021,52(4):339-349. DOI: 10.11777/j.issn1000-3304.2020.20245.
近十年,有机聚合物及其复合热电材料与柔性器件取得了显著进展,在废热回收利用、可穿戴电子学、软体机器人和物联网等领域有广泛的应用. 其中,聚(3
4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)是迄今研究最多也是性能最高的聚合物体系. 本文对近年来有关PEDOT:PSS热电性能有效提升主要策略的文献报道进行了总结. 首先,从PEDOT:PSS的二次掺杂/去掺杂、酸或碱处理和离子液体处理方面等,重点论述了掺杂/去掺杂策略的研究进展;然后,分别从改善聚集态结构、构筑PEDOT微纳米结构和与碳纳米材料复合等3个方面,重点介绍了采用此3种策略提升PEDOT:PSS热电性能的研究进展;最后,对该领域进行总结,提出了开展进一步研究的建议,并对其未来发展前景进行展望.
In the recent decade
due to their versatile advantages of solution processability
light-in-weight
super flexibility
low thermal conductivity and highly adjustable molecular structures or components
organic and organic/inorganic composite thermoelectric materials as well as their flexible devices have made great progress. A variety of judicious strategies of both material preparation and flexible device assembly have been developed to improve the corresponding thermoelectric performances. Hence
they are very promising for wide application fields
including harvesting of waste heat
flexible electronics
soft robotics and internet-of-things. So far
in all of the reported organic polymer and composite thermoelectric materials
poly(3
4-ethylene dioxyethiophene):poly(styrene sulfonate) (PEDOT:PSS) is probably the most frequently studied and most successful system with the highest thermoelectric performance. Nevertheless
compared with inorganic thermoelectric materials
the thermoelectric properties of PEDOT:PSS is distinctly lower than the maximum value of the inorganic counterparts. Considering the fact of few special reviews about the strategies to effectively enhance the thermoelectric performances for PEDOT:PSS to date
it is timely and urgent to publish a relevant review. Here
we present a summarization of the recent progress in the development of strategies to significantly enhance the thermoelectric properties of PEDOT:PSS developed so far. First
the advances of the doping/de-doping strategies
such as second doping/de-doping
acid or alkali treatment
and treating by ionic liquid
are focused in details. The corresponding mechanism is discussed as well. Then
the recent developments of three types of boosting strategies
i.e.
tuning of aggregation structures (including crystalline and orientation microstructures)
construction of PEDOT nano-micro structures (for example
nanospheres
nanorods
micro- or nano-tubes and nanofibers)
and fabrication of thermoelectric composites with inorganic particles such as carbon nanotubes and graphene nanoplatelets
are concentrated. The relevant thermoelectric properties are compared. Finally
we conclude that some strategies to effectively enhance the thermoelectric properties for PEDOT:PSS have been successfully developed
and there is still a long way to go for the actual applications. In particular
three tentative suggestions to the future investigations are proposed
i.e.
in-depth investigation of the mechanism between microstructure and thermoelectric performances for the neat PEDOT:PSS
developing novel fabrication procedures with strong interfacial interaction like covalent-bonding and the relevant mechanism study
and exploiting of precise measurement techniques for the thermoelectric parameters of films
hydrogels and aerogels. Finally
the prospects of the future work are outlooked.
聚(34-乙烯二氧噻吩):聚(苯乙烯磺酸)热电性能结构-性能关系
Poly(34-ethylenedioxythiophene):poly(styrene sulfonate)Thermoelectric propertiesStructure-performance relationship
Petsagkourakis I, Kim N, Tybrandt K, Zozoulenko I, Crispin X . Adv Electron Mater , 2019 . 5 ( 11 ): 1800918 DOI:10.1002/aelm.201800918http://doi.org/10.1002/aelm.201800918 .
Qu D, Huang X, Li X, Wang H, Chen G . npj Flex Electron , 2020 . 4 1 DOI:10.1038/s41528-020-0064-2http://doi.org/10.1038/s41528-020-0064-2 .
Chen G, Li Y, Bick M, Chen J . Chem Rev , 2020 . 120 ( 8 ): 3668 - 3720 . DOI:10.1021/acs.chemrev.9b00821http://doi.org/10.1021/acs.chemrev.9b00821 .
Li Xin(李昕), Xu Yingtao(许英涛), Zheng Yiping(郑一平), Zhang Yan(张焱), Li Congju(李从举), Chen Guangming(陈光明) . Acta Polymerica Sinica(高分子学报) , 2017 . ( 4 ): 661 - 668 . DOI:10.11777/j.issn1000-3304.2017.16158http://doi.org/10.11777/j.issn1000-3304.2017.16158 .
Zhu Q, Wang X, Zheng Y, Tan T L, Wu G, Yang S W, Xu J . Front Chem , 2019 . 7 00783 DOI:10.3389/fchem.2019.00783http://doi.org/10.3389/fchem.2019.00783 .
Choi K, Kim S L, Yi Si, Hsu J H, Yu C . ACS Appl Mater Interfaces , 2018 . 10 ( 28 ): 23891 - 23899 . DOI:10.1021/acsami.8b06850http://doi.org/10.1021/acsami.8b06850 .
Hosseini E, Kollath V O, Karan K . J Mater Chem C , 2020 . 8 ( 12 ): 3982 - 3990 . DOI:10.1039/C9TC06311Khttp://doi.org/10.1039/C9TC06311K .
Kim Y J, Kim N K, Park W T, Liu C, Noh Y Y, Kim D Y . Adv Funct Mater , 2019 . 29 ( 23 ): 1807786 DOI:10.1002/adfm.201807786http://doi.org/10.1002/adfm.201807786 .
Shi X L, Zou J, Chen Z G . Chem Rev , 2020 . 120 ( 15 ): 7399 - 7515 . DOI:10.1021/acs.chemrev.0c00026http://doi.org/10.1021/acs.chemrev.0c00026 .
Xia Y, Sun K, Ouyang J . Adv Mater , 2012 . 24 ( 18 ): 2436 - 2440 . DOI:10.1002/adma.201104795http://doi.org/10.1002/adma.201104795 .
Yeo J S, Yun J M, Kim D Y, Park S, Kim S S, Yoon M H, Kim T W, Na S I . ACS Appl Mater Interfaces , 2012 . 4 ( 5 ): 2551 - 2560 . DOI:10.1021/am300231vhttp://doi.org/10.1021/am300231v .
Fan Z, Du D, Yu Z, Li P, Xia Y, Ouyang J . ACS Appl Mater Interfaces , 2016 . 8 ( 35 ): 23204 - 23211 . DOI:10.1021/acsami.6b07234http://doi.org/10.1021/acsami.6b07234 .
Jiang Q, Liu C, Song H, Xu J, Zhang G, Lu B . J Mater Sci , 2013 . 24 4240 - 4246.
Wen Huiying(温慧颖), Meng Yanfeng(蒙延峰), Jiang Shichun(蒋世春), An Lijia(安立佳) . Acta Polymerica Sinica(高分子学报) , 2008 . ( 2 ): 107 - 115 . DOI:10.3321/j.issn:1000-3304.2008.02.003http://doi.org/10.3321/j.issn:1000-3304.2008.02.003 .
Cho C, Wallace K L, Tzeng P, Hsu J H, Yu C, Grunlan J C . Adv Energy Mater , 2016 . 6 ( 7 ): 1502168 DOI:10.1002/aenm.201502168http://doi.org/10.1002/aenm.201502168 .
Liang L, Gao C, Chen G, Guo C Y . J Mater Chem C , 2016 . 4 ( 3 ): 526 - 532 . DOI:10.1039/C5TC03768Ahttp://doi.org/10.1039/C5TC03768A .
Bahk J H, Fang H, Yazawa K, Shakouri A . J Mater Chem C , 2015 . 3 ( 40 ): 10362 - 10374 . DOI:10.1039/C5TC01644Dhttp://doi.org/10.1039/C5TC01644D .
Pu S, Fu J, Liao Y, Ge L, Zhou Y, Zhang S, Zhao S, Liu X, Hu X, Liu K, Chen J . Adv Mater , 2020 . 32 ( 17 ): 1907307 DOI:10.1002/adma.201907307http://doi.org/10.1002/adma.201907307 .
Wang X, Liu P, Jiang Q, Zhou W, Xu J, Liu J, Jia Y, Duan X, Liu Y, Du Y, Jiang F . ACS Appl Mater Interfaces , 2019 . 11 ( 2 ): 2408 - 2417 . DOI:10.1021/acsami.8b19168http://doi.org/10.1021/acsami.8b19168 .
Jeong M H, Sanger A, Kang S B, Jung Y S, Oh I S, Yoo J W, Kim G H, Choi K J . J Mater Chem A , 2018 . 6 ( 32 ): 15621 - 15629 . DOI:10.1039/C8TA03606Chttp://doi.org/10.1039/C8TA03606C .
Bubnova O, Khan Z U, Wang H, Braun S, Evans D R, Fabretto M, Hojati Talemi P, Dagnelund D, Arlin J B, Geerts Y H, Desbief S, Breiby D W, Andreasen J W, Lazzaroni R, Chen W M, Zozoulenko I, Berggern M, Crispin X . Nat Mater , 2014 . 13 ( 2 ): 190 - 194 . DOI:10.1038/nmat3824http://doi.org/10.1038/nmat3824 .
Zhou X, Pan C, Gao C, Shinohara A, Yin X, Wang L, Li Y, Jiang Q, Yang C, Wang L . J Mater Chem A , 2019 . 7 ( 17 ): 10422 - 10430.
Liu Z, Chen G . Adv Mater Technol , 2020 . 5 ( 7 ): 2000049 DOI:10.1002/admt.202000049http://doi.org/10.1002/admt.202000049 .
Ni D, Chen Y, Song H, Liu C, Yang X, Cai K . J Mater Chem A , 2019 . 7 ( 3 ): 1323 - 1333 . DOI:10.1039/C8TA08814Dhttp://doi.org/10.1039/C8TA08814D .
Zeng M, Wang X, Ma R, Zhu W, Li Y, Chen Z, Zhou J, Li W, Liu T, He Z, Yan H, Huang F, Cao Y . Adv Energy Mater , 2020 . 10 ( 25 ): 2000743 DOI:10.1002/aenm.202000743http://doi.org/10.1002/aenm.202000743 .
Itoh K, Kato Y, Honma Y, Masunaga H, Fujiwara A, Iguchi S, Sasaki T . J Phys Chem C , 2019 . 123 ( 22 ): 13467 - 13471 . DOI:10.1021/acs.jpcc.9b02475http://doi.org/10.1021/acs.jpcc.9b02475 .
Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M, Chen K Q . Adv Funct Mater , 2019 . 30 ( 8 ): 19038 .
Zhang Y, Deng L, Lv H, Chen G . npj Flex Electron , 2020 . 4 26 DOI:10.1038/s41528-020-00089-2http://doi.org/10.1038/s41528-020-00089-2 .
Deng L, Chen G . Nano Energy , 2021 . 80 105448 DOI:10.1016/j.nanoen.2020.105448http://doi.org/10.1016/j.nanoen.2020.105448 .
Mullar R, Dunnill C W . Compos Commun , 2020 . 20 100345 DOI:10.1016/j.coco.2020.04.011http://doi.org/10.1016/j.coco.2020.04.011 .
Chen Y, Zhao Y, Liang Z . Energy Environ Sci , 2015 . 8 ( 2 ): 401 - 422 . DOI:10.1039/C4EE03297Ghttp://doi.org/10.1039/C4EE03297G .
Han S, Jiao F, Khan Z U, Edberg J, Fabiano S, Crispin X . Adv Funct Mater , 2017 . 27 ( 44 ): 1703549 DOI:10.1002/adfm.201703549http://doi.org/10.1002/adfm.201703549 .
Wu G, Zhang Z G, Li Y, Gao C, Wang X, Chen G . ACS Nano , 2017 . 11 ( 6 ): 5746 - 5752 . DOI:10.1021/acsnano.7b01279http://doi.org/10.1021/acsnano.7b01279 .
Qu D, Li X, Wang H, Chen G . Adv Sci , 2019 . 6 ( 15 ): 1900584 DOI:10.1002/advs.201900584http://doi.org/10.1002/advs.201900584 .
Antiohos D, Folkes G, Sherrell P, Ashraf S, Wallace G G, Aitchison P, Harris A T, Chen J, Minett A I . J Mater Chem , 2011 . 21 ( 40 ): 15987 - 15994 . DOI:10.1039/c1jm12986dhttp://doi.org/10.1039/c1jm12986d .
Zhou J, Ventura I, Lubineau G . Ind Eng Chem Res , 2014 . 53 ( 9 ): 3539 - 3549 . DOI:10.1021/ie4033389http://doi.org/10.1021/ie4033389 .
Li C, Wu X, Sui X, Wu H, Wang C, Feng G, Wu Y, Liu F, Liu X, Tang Z, Li W . Angew Chem Int Ed , 2019 . 58 ( 43 ): 15532 - 15540 . DOI:10.1002/anie.201910489http://doi.org/10.1002/anie.201910489 .
Kroon R, Mengistie D A, Kiefer D, Hynynen J, Ryan J D, Yu L, Muller C . Chem Soc Rev , 2016 . 45 ( 22 ): 6147 - 6164 . DOI:10.1039/C6CS00149Ahttp://doi.org/10.1039/C6CS00149A .
Biniek L, Leclerc N, Heiser T, Bechara R, Brinkmann M . Macromolecules , 2013 . 46 ( 10 ): 4014 - 4023 . DOI:10.1021/ma400516dhttp://doi.org/10.1021/ma400516d .
Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A . Nat Mater , 2013 . 12 ( 11 ): 1038 - 1044 . DOI:10.1038/nmat3722http://doi.org/10.1038/nmat3722 .
Maity S, Kulsi C, Banerjee S, Das S, Chatterjee K . Mater Res Exp , 2019 . 6 ( 10 ): 105095 DOI:10.1088/2053-1591/ab3e7chttp://doi.org/10.1088/2053-1591/ab3e7c .
Kang K, Watanabe S, Broch K, Sepe A, Brown A, Nasrallah I, Nikolka M, Kuroda S, Sirringhaus H . Nat Mater , 2016 . 15 ( 8 ): 896 - 902.
Ju D, Kim D, Yook H, Han J W, Cho K . Adv Funct Mater , 2019 . 29 1905590 DOI:10.1002/adfm.201905590http://doi.org/10.1002/adfm.201905590 .
Kim B, Shin H, Park T, Lim H, Kim E . Adv Mater , 2013 . 25 ( 38 ): 5483 - 5489 . DOI:10.1002/adma.201301834http://doi.org/10.1002/adma.201301834 .
Wang L, Zhang Z, Liu Y, Wang B, Fang L, Qiu J, Zhang K, Wang S . Nat Commun , 2018 . 9 3817 DOI:10.1038/s41467-018-06251-9http://doi.org/10.1038/s41467-018-06251-9 .
Xu Di(许頔), Shen Hujiang(沈沪江), Xie Junjie(解俊杰), Wang Wei(王炜), Yuan Huihui(袁慧慧), Li Yuyu(李昱煜), Zhang Tao(张焘), Chen Xinyu(陈薪羽), He Yunlong(何云龙), Zhang Yumei(张玉梅) . Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 1 ): 36 - 43 . DOI:10.11777/j.issn1000-3304.2018.18169http://doi.org/10.11777/j.issn1000-3304.2018.18169 .
Zhang S, Fan Z, Wang X, Zhang Z, Ouyang J . J Mater Chem A , 2018 . 6 ( 16 ): 7080 - 7087 . DOI:10.1039/C7TA11148Ghttp://doi.org/10.1039/C7TA11148G .
Zhao J, Tan D, Chen G . J Mater Chem C , 2017 . 5 ( 1 ): 47 - 53 . DOI:10.1039/C6TC04613Dhttp://doi.org/10.1039/C6TC04613D .
Xie J, Zhao C E, Lin Z Q, Gu P Y, Zhang Q . Chem Asian J , 2016 . 11 ( 10 ): 1489 - 151 . DOI:10.1002/asia.201600293http://doi.org/10.1002/asia.201600293 .
Li X, Liu C, Zhou W, Duan X, Du Y, Xu J, Li C, Liu J, Jia Y, Liu P, Jiang Q, Luo C, Liu C, Jiang F . ACS Appl Mater Interfaces , 2019 . 11 ( 8 ): 8138 - 8147 . DOI:10.1021/acsami.9b00298http://doi.org/10.1021/acsami.9b00298 .
Wu J, Sun Y, Pei W B, Huang L, Xu W, Zhang Q . Synth Met , 2014 . 196 173 - 177 . DOI:10.1016/j.synthmet.2014.08.001http://doi.org/10.1016/j.synthmet.2014.08.001 .
Saxena N, Pretzl B, Lamprecht X, Biessmann L, Yang D, Li N, Bilko C, Bernstorff S, Muller-Buschbaum P . ACS Appl Mater Interfaces , 2019 . 11 ( 8 ): 8060 - 8071.
Xue Y, Gao C, Liang L, Wang X, Chen G . J Mater Chem A , 2018 . 6 ( 45 ): 22381 - 22390 . DOI:10.1039/C8TA09656Bhttp://doi.org/10.1039/C8TA09656B .
Hu X, Chen G, Wang X, Wang H . J Mater Chem A , 2015 . 3 ( 42 ): 20896 - 20902 . DOI:10.1039/C5TA07381Bhttp://doi.org/10.1039/C5TA07381B .
Yao C J, Zhang H L, Zhang Q . Polymer , 2019 . 11 ( 1 ): 30960091 .
Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J, Lee K . Adv Mater , 2014 . 26 ( 14 ): 2268 - 2272 . DOI:10.1002/adma.201304611http://doi.org/10.1002/adma.201304611 .
Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A . Nat Rev Mater , 2016 . 1 ( 10 ): 16050 DOI:10.1038/natrevmats.2016.50http://doi.org/10.1038/natrevmats.2016.50 .
Hu X, Chen G, Wang X . Compos Sci Technol , 2017 . 144 43 - 50 . DOI:10.1016/j.compscitech.2017.03.018http://doi.org/10.1016/j.compscitech.2017.03.018 .
Du Y, Shi Y, Meng Q, Shen S Z . Synth Met , 2020 . 261 116318 DOI:10.1016/j.synthmet.2020.116318http://doi.org/10.1016/j.synthmet.2020.116318 .
Liu S, Li H, He C . Carbon , 2019 . 149 25 - 32 . DOI:10.1016/j.carbon.2019.04.007http://doi.org/10.1016/j.carbon.2019.04.007 .
Jiang Q, Lan X, Liu C, Shi H, Zhu Z, Zhao F, Xu J, Jiang F . Mater Chem Front , 2018 . 2 ( 4 ): 679 - 685 . DOI:10.1039/C7QM00515Fhttp://doi.org/10.1039/C7QM00515F .
Zhang T, Qi H, Liao Z, Horev Y D, Panes Ruiz L A, Petkov P S, Zhang Z, Dong R, Feng X . Nat Commun , 2019 . 10 ( 1 ): 4225 DOI:10.1038/s41467-019-11921-3http://doi.org/10.1038/s41467-019-11921-3 .
Kim J Y, Jung J H, Lee D E, Joo J . Synth Met , 2002 . 126 ( 2−3 ): 311 - 31.
Yi C, Wilhite A, Zhang L, Hu R, Chuang S S C, Zheng J, Gong X . ACS Appl Mater Interfaces , 2015 . 7 ( 17 ): 8984 - 8989 . DOI:10.1021/acsami.5b01960http://doi.org/10.1021/acsami.5b01960 .
Park H, Lee S H, Kim F S, Choi H H, Cheong I W, Kim J H . J Mater Chem A , 2014 . 2 ( 18 ): 6532 - 6539 . DOI:10.1039/C3TA14960Ahttp://doi.org/10.1039/C3TA14960A .
Honma Y, Itoh K, Masunaga H, Fujiwara A, Nishizaki T, Iguchi S, Sasaki T . Adv Electron Mater , 2018 . 4 ( 2 ): 1700490 DOI:10.1002/aelm.201700490http://doi.org/10.1002/aelm.201700490 .
Nardes A M, Janssen R A J, Kemerink M . Adv Funct Mater , 2008 . 18 ( 6 ): 865 - 871 . DOI:10.1002/adfm.200700796http://doi.org/10.1002/adfm.200700796 .
Zhu Z, Liu C, Jiang F, Xu J, Liu E . Synth Met , 2017 . 225 31 - 40 . DOI:10.1016/j.synthmet.2016.11.011http://doi.org/10.1016/j.synthmet.2016.11.011 .
Toolan D T W, Isakova A, Hodgkinson R, Gough T, Topham P D, Howse J R . Macromolecules , 2016 . 49 ( 12 ): 4579 - 4586 . DOI:10.1021/acs.macromol.6b00312http://doi.org/10.1021/acs.macromol.6b00312 .
Kim G H, Shao L, Zhang K, Pipe K P . Nat Mater , 2013 . 12 ( 8 ): 719 - 723 . DOI:10.1038/nmat3635http://doi.org/10.1038/nmat3635 .
Xu S, Hong M, Shi X L, Wang Y, Ge L, Bai Y, Wang L, Zou J, Chen Z G . Chem Mater , 2019 . 31 ( 14 ): 5238 - 5244 . DOI:10.1021/acs.chemmater.9b01500http://doi.org/10.1021/acs.chemmater.9b01500 .
Chen G, Xu W, Zhu D . J Mater Chem , 2017 . 5 ( 18 ): 4350 - 4360.
Wang X, Zhang X, Sun L, Lee D, Palacios T, Gleason K K . Sci Adv , 2018 . 4 ( 9 ): eaat5780 DOI:10.1126/sciadv.aat5780http://doi.org/10.1126/sciadv.aat5780 .
Zhang K, Qiu J, Wang S . Nanoscale , 2016 . 8 ( 15 ): 8033 - 8041 . DOI:10.1039/C5NR08421Khttp://doi.org/10.1039/C5NR08421K .
Li Xin(李昕), Wang Xichang(王喜常), Zheng Yiping(郑一平), Zhang Yan(张焱), Li Congju(李从举), Chen Guangming(陈光明) . Acta Polymerica Sinica(高分子学报) , 2016 . ( 1 ): 91 - 97 . DOI:10.11777/j.issn1000-3304.2016.15133http://doi.org/10.11777/j.issn1000-3304.2016.15133 .
Hsu J H, Choi W, Yang G, Yu C . Org Electron , 2017 . 45 182 - 189 . DOI:10.1016/j.orgel.2017.03.007http://doi.org/10.1016/j.orgel.2017.03.007 .
Yu C, Choi K, Yin L, Grunlan J C . ACS Nano , 2011 . 5 ( 10 ): 7885 - 7892 . DOI:10.1021/nn202868ahttp://doi.org/10.1021/nn202868a .
Choi K, Yu C . Plos One , 2012 . 7 ( 9 ): e44977 DOI:10.1371/journal.pone.0044977http://doi.org/10.1371/journal.pone.0044977 .
Yoo D, Kim J, Kim J H . Nano Res , 2014 . 7 ( 5 ): 717 - 730 . DOI:10.1007/s12274-014-0433-zhttp://doi.org/10.1007/s12274-014-0433-z .
Du F P, Cao N N, Zhang Y F, Fu P, Wu Y G, Lin Z D, Shi R, Amini A, Cheng C . Sci Rep , 2018 . 8 6441 DOI:10.1038/s41598-018-24632-4http://doi.org/10.1038/s41598-018-24632-4 .
0
浏览量
107
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构