浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
[ "门永锋,男,1973年生. 1995年获东南大学理学学士,1998年获中国科学院长春应用化学研究所理学硕士,2001年德国弗赖堡大学物理系获自然科学博士. 2002~2005年,德国BASF公司高分子研究中心,博士后、Physicist. 2005年加入中国科学院长春应用化学研究所开展工作. 2005年入选中国科学院百人计划,2014年入选科技部中青年科技创新领军人才,2016年入选第二批万人计划科技创新领军人才,2015年获国家基金委杰出青年基金、英国皇家学会牛顿高级学者基金. 目前担任高分子物理与化学国家重点实验室主任、中国晶体学会小角散射专业委员会主任、IUPAC商用聚合物结构与性能分会主席. 主要从事高分子结构与性能方面研究工作." ]
纸质出版日期:2021-07-20,
网络出版日期:2021-05-21,
收稿日期:2020-11-16,
修回日期:2020-12-21,
扫 描 看 全 文
吕冬,卢影,门永锋.小角X射线散射技术在高分子表征中的应用[J].高分子学报,2021,52(07):822-839.
Lyu Dong,Lu Ying,Men Yong-feng.Typical Applications of Small-angle X-ray Scattering Technique in Polymer Characterization[J].ACTA POLYMERICA SINICA,2021,52(07):822-839.
吕冬,卢影,门永锋.小角X射线散射技术在高分子表征中的应用[J].高分子学报,2021,52(07):822-839. DOI: 10.11777/j.issn1000-3304.2020.20249.
Lyu Dong,Lu Ying,Men Yong-feng.Typical Applications of Small-angle X-ray Scattering Technique in Polymer Characterization[J].ACTA POLYMERICA SINICA,2021,52(07):822-839. DOI: 10.11777/j.issn1000-3304.2020.20249.
小角X射线散射(SAXS)技术是表征高分子材料微观结构的一种重要手段. 当X射线穿过材料时,在材料不均一的电子云密度分布作用下,发生散射并形成特定的散射图案,使得我们可以根据特定的模型来反推材料的微观结构,并计算相关结构参数. SAXS特有的对微观结构的统计平均及无损探测使其成为了一种不可或缺的高分子材料微观结构分析手段. 本文首先简述了SAXS技术的基本理论,在此基础上根据测试中的实际问题给出了测试时可采取的实验技巧. 最后,结合典型实例,概述了高分子材料中可用SAXS技术表征的微观结构及其相应的理论模型. 希望本文能作为入门文献,帮助初学者更好地理解SAXS技术的原理,并结合实际需求迅速了解SAXS技术的适用范围及相关实验技巧,高效地完成相关实验.
Small-angle X-ray scattering (SAXS) technique is one of the most significant methods for determining the micro-structures of polymeric materials due to its statistical average and nondestructive detecting feature. Usually
a monochromatic parallel beam of X-rays is used for scattering experiments. When passing through a sample
the oscillating electromagnetic field (mostly the electric part) of X-rays interact with electrons
making the electrons secondary sources of X-rays of the same frequency. Those secondary X-rays interfere with each other to form a specific pattern deviating from the primary beam path depending on the actual locations of the electrons in the sample. Mathematically
such interferences can be obtained by a summation of all secondary X-ray waves. As the number of the electrons within the sample is very large
an integration is used to represent the summation mentioned above. Because of the wave nature of the X-rays
the amplitude of the scattered X-rays determined by the above integration is just a Fourier transformation of the electron density distribution within the scattering volume. Due to the limitation in detection technique
the complex value of amplitude of scattered X-rays with real and imaginary parts cannot be recorded. It is the intensity rather than the amplitude that is recorded during experiments resulting in a loss of the phase information. Therefore
obtaining exact structural information (electron density distribution) becomes not easy and must be based on specific model fittings. Besides structures
SAXS intensity distribution can be used to investigate sample’s gross properties such as fraction of phases or local properties such as fractal dimensions of interfaces between phases. This work began with an introduction of the fundamental theories of the SAXS technique
followed by practical suggestions on performing the experiments and brief summaries of models developed for different structures. The authors wish this review could help the beginners to comprehend the elements of the SAXS technique and serve as an instruction manual for valid data acquisition.
高分子表征小角X射线散射(SAXS)片晶微观结构
Polymer characterizationSmall-angle X-ray scattering (SAXS)LamellaeMicro-structure
Glatter O, Kratky O. Small-Angle Scattering of X-Rays. New York: Acadenic Press, 1982
Guinier A. X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. San Francisco: W. H. Freeman and Company, 1963
Guinier A, Fournet G. Small-Angle Scattering of X-Rays. New York: Wiley, 1955
Stribeck N. X-Ray Scattering of Soft Matter. Berlin: Springer, 2007. doi:10.1007/978-3-540-69856-2http://dx.doi.org/10.1007/978-3-540-69856-2
Lu Y. Molecular Weight and Chains Configuration Dependencies of Crystallization and Deformation in Polypropylene. Doctoral Dissertation of the University of Chinese Academy of Sciences, 2015
Vonk C G, Kortleve G. Kolloid Z, 1967, 220: 19-24. doi:10.1007/bf02086052http://dx.doi.org/10.1007/bf02086052
Zhu Yuping(朱育平). Small Angle X-ray Scattering-Theory, Measurment, Calculation and Application (小角X射线散射-理论、测试、计算及应用). Beijing(北京): Chemical Industry Press(化学工业出版社), 2008
Strobl G. The Physics of Polymers. Berlin: Springer, 2007
Lindner P, Zemb T. Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter. Amsterdam: Elsevier, 2002. doi:10.1016/s1369-7021(02)01143-4http://dx.doi.org/10.1016/s1369-7021(02)01143-4
Roe R J. Methods of X-Ray and Neutron Scattering in Polymer Science. New York: Oxford University Press, 2000. doi:10.1016/b978-0-08-050612-8.50008-8http://dx.doi.org/10.1016/b978-0-08-050612-8.50008-8
Stein R S. Scattering and Birefringence Methods Applied to Polymer Texture(散射和双折射方法在高聚物织构研究中的应用). Beijing(北京): Science Press(科学出版社), 1983
Chu B, Hsiao B S. Chem Rev, 2001, 101: 1727-1762. doi:10.1021/cr9900376http://dx.doi.org/10.1021/cr9900376
Chen R. Application of Data Processing for Small-Angle X-ray Scattering in Polymer System. Doctoral Dissertation of the University of Chinese Academy of Sciences, 2016
Pauw B R. J Phys: Condens Matter, 2013, 25: 383201. doi:10.1088/0953-8984/25/38/383201http://dx.doi.org/10.1088/0953-8984/25/38/383201
Hammersley A. J Appl Crystallogr, 2016, 49: 646-652. doi:10.1107/s1600576716000455http://dx.doi.org/10.1107/s1600576716000455
Semenyuk A V, Svergun D I. J Appl Crystallogr, 1991, 24: 537-540. doi:10.1107/s002188989100081xhttp://dx.doi.org/10.1107/s002188989100081x
Bressler I, Kohlbrecher J, Thunemann A F. J Appl Crystallogr, 2015, 48: 1587-1598. doi:10.1107/s1600576715007347http://dx.doi.org/10.1107/s1600576715007347
Boon N, Schurtenberger P. Phys Chem Chem Phys, 2017, 19: 23740-23746. doi:10.1039/c7cp02434ghttp://dx.doi.org/10.1039/c7cp02434g
Forster S, Apostol L, Bras W. J Appl Crystallogr, 2010, 43: 639-646. doi:10.1107/s0021889810008289http://dx.doi.org/10.1107/s0021889810008289
Konarev P V, Petoukhov M V, Volkov V V, Svergun D I. J Appl Crystallogr, 2006, 39: 277-286. doi:10.1107/s0021889806004699http://dx.doi.org/10.1107/s0021889806004699
Bressler I, Pauw B R, Thunemann A F. J Appl Crystallogr, 2015, 48: 962-969. doi:10.1107/s1600576715007347http://dx.doi.org/10.1107/s1600576715007347
Hopkins J B, Gillilan R E, Skou S. J Appl Crystallogr, 2017, 50: 1545-1553. doi:10.1107/s1600576717011438http://dx.doi.org/10.1107/s1600576717011438
Lyu D, Sun Y Y, Lu Y, Liu L Z, Chen R, Thompson G, Caton-Rose F, Coates P, Wang Y, Men Y F. Macromolecules, 2020, 53: 4863-4873. doi:10.1021/acs.macromol.0c00005http://dx.doi.org/10.1021/acs.macromol.0c00005
Wang B H, He K Z, Lu Y G, Zhou Y F, Chen J L, Shen C Y, Chen J B, Men Y F, Zhang B. Macromolecules, 2020, 53: 6476-6485. doi:10.1021/acs.macromol.0c00885http://dx.doi.org/10.1021/acs.macromol.0c00885
Zhou J, Zheng Y, Shan G R, Bao Y Z, Wang W J, Pan P J. Polymer, 2020, 188: 122121. doi:10.1016/j.polymer.2019.122121http://dx.doi.org/10.1016/j.polymer.2019.122121
Lu Y, Lyu D, Tang Y J, Qian L, Qin Y N, Xiang M Y, Men Y F. Polymer, 2020, 210: 123049. doi:10.1016/j.polymer.2020.123049http://dx.doi.org/10.1016/j.polymer.2020.123049
Lyu D, Tang Y J, Qian L, Chen R, Lu Y, Men Y F. Polymer, 2019, 167: 146-153. doi:10.1016/j.polymer.2019.01.081http://dx.doi.org/10.1016/j.polymer.2019.01.081
Jiang Z Y, Liao T, Chen R, Men Y F. Polymer, 2019, 185: 121984. doi:10.1016/j.polymer.2019.121984http://dx.doi.org/10.1016/j.polymer.2019.121984
Lyu D, Chen R, Lu Y, Men Y F. Ind Eng Chem Res, 2018, 57: 8927-8937. doi:10.1021/acs.iecr.8b01650http://dx.doi.org/10.1021/acs.iecr.8b01650
Lu Y, Men Y F. Chinese J Polym Sci, 2018, 36: 1195-1199. doi:10.1007/s10118-018-2123-xhttp://dx.doi.org/10.1007/s10118-018-2123-x
Lu Y, Men Y F. Macromol Mater Eng, 2018, 303: 1800203. doi:10.1002/mame.201800203http://dx.doi.org/10.1002/mame.201800203
Hu S S, Rieger J, Lai Y Q, Roth S V, Gehrke R, Men Y F. Macromolecules, 2008, 41: 5073-5076. doi:10.1021/ma800451nhttp://dx.doi.org/10.1021/ma800451n
Shen J F, Zhou Y F, Lu Y G, Wang B H, Shen C Y, Chen J B, Zhang B. Macromolecules, 2020, 53: 2136-2144. doi:10.1021/acs.macromol.9b01880http://dx.doi.org/10.1021/acs.macromol.9b01880
Lu Y G, Li H, Wei H X, Wang B H, Shen C Y, Zhang B, Chen J B. Polymer, 2020, 199: 122562. doi:10.1016/j.polymer.2020.122562http://dx.doi.org/10.1016/j.polymer.2020.122562
Konko I, Guriyanova S, Boyko V, Sun L C, Liu D, Reck B, Men Y F. Langmuir, 2019, 35: 6075-6088. doi:10.1021/acs.langmuir.8b04327http://dx.doi.org/10.1021/acs.langmuir.8b04327
Lin Y F, Li X Y, Chen X W, An M F, Zhang Q L, Wang D L, Chen W, Yin P C, Meng L P, Li L B. Polymer, 2019, 178: 121579. doi:10.1016/j.polymer.2019.121579http://dx.doi.org/10.1016/j.polymer.2019.121579
Lv C, Wang R Y, Gao J, Ding N, Dong S N, Nie J J, Xu J T, Du B Y. Polymer, 2019, 185: 121982. doi:10.1016/j.polymer.2019.121982http://dx.doi.org/10.1016/j.polymer.2019.121982
Lu Y P, Chen T Q, Mei A X, Chen T Y, Ding Y W, Zhang X H, Xu J T, Fan Z Q, Du B Y. Phys Chem Chem Phys, 2013, 15: 8276-8286. doi:10.1039/c3cp50376chttp://dx.doi.org/10.1039/c3cp50376c
Yan J J, Tang R P, Zhang B, Zhu X Q, Xi F, Li Z C, Chen E Q. Macromolecules, 2009, 42: 8451-8459. doi:10.1021/ma901494zhttp://dx.doi.org/10.1021/ma901494z
Liu X B, Zhao Y F, Chen E Q, Ye C, Shen Z H, Fan X H, Cheng S Z D, Zhou Q F. Macromolecules, 2008, 41: 5223-5229. doi:10.1021/ma800517khttp://dx.doi.org/10.1021/ma800517k
Hsiao B S, Chu B, Burger C. Synchrotron Radiat News, 2002, 15: 20-34. doi:10.1080/08940880208602974http://dx.doi.org/10.1080/08940880208602974
Xiang M Y, Lyu D, Qin Y N, Chen R, Liu L Z, Men Y F. Polymer, 2020, 210: 123034. doi:10.1016/j.polymer.2020.123034http://dx.doi.org/10.1016/j.polymer.2020.123034
Ding S S, Fang C, Wang X H, Wang Z G. Polymer, 2020, 186: 121993. doi:10.1016/j.polymer.2019.121993http://dx.doi.org/10.1016/j.polymer.2019.121993
Wang W, Wang X, Jiang F, Wang Z. Polym Chem, 2018, 9: 3067-3079. doi:10.1039/c8py00375khttp://dx.doi.org/10.1039/c8py00375k
Wu Q W, Lv C, Zhang Z J, Li Y Q, Nie J J, Xu J T, Du B Y. Langmuir, 2018, 34: 9203-9214. doi:10.1021/acs.langmuir.8b01575http://dx.doi.org/10.1021/acs.langmuir.8b01575
Jiang H, Ye L, Wang Y H, Ma L, Cui D M, Tang T. Macromolecules, 2020, 53: 3349-3357. doi:10.1021/acs.macromol.0c00159http://dx.doi.org/10.1021/acs.macromol.0c00159
Liu K, Yang C M, Yang B M, Zhang L, Huang W C, Ouyang X P, Qi F G, Zhao N, Bian F G. Chinese J Polym Sci, 2020, 38: 92-99. doi:10.1007/s10118-019-2315-zhttp://dx.doi.org/10.1007/s10118-019-2315-z
Bhaumik S, Ntetsikas K, Hadjichristidis N. Macromolecules, 2020, 53: 6682-6689. doi:10.1021/acs.macromol.9b02326http://dx.doi.org/10.1021/acs.macromol.9b02326
Tap T D, Nguyen L, Hasegawa S, Sawada S, Luan L, Maekawa Y. J Appl Polym Sci, 2020, 137: e49029. doi:10.1002/app.49029http://dx.doi.org/10.1002/app.49029
Zhang Q L, Li L F, Su F M, Ji Y X, Ali S, Zhao H Y, Meng L P, Li L B. Macromolecules, 2018, 51: 4350-4362. 10. doi:10.1021/acs.macromol.8b00346http://dx.doi.org/10.1021/acs.macromol.8b00346
Zofchak E S, LaNasa J A, Torres V M, Hickey R J. Macromolecules, 2020, 53: 835-843. doi:10.1021/acs.macromol.9b01695http://dx.doi.org/10.1021/acs.macromol.9b01695
Strobl G R, Schneider M. J Polym Sci, Part B: Polym Phys, 1980, 18: 1343-1359. doi:10.1002/pol.1980.180180614http://dx.doi.org/10.1002/pol.1980.180180614
Yang S, Wei Q Y, Gao X R, Zhou L, Xu L, Tang J H, Zhong G J, Ji X, Li Z M. Polymer, 2020, 187: 122099. doi:10.1016/j.polymer.2019.122099http://dx.doi.org/10.1016/j.polymer.2019.122099
Hu T, Hua W Q, Zhong G J, Wang Y D, Gao Y T, Hong C X, Li Z M, Bian F G, Xiao T Q. Macromolecules, 2020, 53: 6498-6509. doi:10.1021/acs.macromol.0c01177http://dx.doi.org/10.1021/acs.macromol.0c01177
Zhu H, Lv Y, Shi D, Li Y G, Miao W J, Wang Z B. Chinese J Polym Sci, 2020, 38: 1015-1024. doi:10.1007/s10118-020-2427-5http://dx.doi.org/10.1007/s10118-020-2427-5
Huang S Y, Li H F, Jiang S C. Polymer, 2019, 175: 81-86. doi:10.1016/j.polymer.2019.05.020http://dx.doi.org/10.1016/j.polymer.2019.05.020
Zhang W Y, Li J Q, Li H F, Jiang S C, An L J. Polymer, 2018, 143: 309-315. doi:10.1016/j.polymer.2018.04.030http://dx.doi.org/10.1016/j.polymer.2018.04.030
Li W Z, Gong P J, Huang Y J, Niu Y H, Li G X. Appl Surf Sci, 2020, 501: 144251. doi:10.1016/j.apsusc.2019.144251http://dx.doi.org/10.1016/j.apsusc.2019.144251
Li W Z, Niu Y H, Zhou C T, Luo H, Li G X. Chinese J Polym Sci, 2017, 35: 1402-1414. doi:10.1007/s10118-017-1997-3http://dx.doi.org/10.1007/s10118-017-1997-3
Wang H, Wu C J, Cui D M, Men Y F. Macromolecules, 2018, 51: 497-503. doi:10.1021/acs.macromol.7b01943http://dx.doi.org/10.1021/acs.macromol.7b01943
Chen R, Lu Y, Jiang Z Y, Men Y F. J Polym Sci, Part B: Polym Phys, 2018, 56: 219-224. doi:10.1002/polb.24536http://dx.doi.org/10.1002/polb.24536
Cruz C S, Stribeck N, Zachmann H G, Calleja F J B. Macromolecules, 1991, 24: 5980-5990. doi:10.1002/polb.1991.090290706http://dx.doi.org/10.1002/polb.1991.090290706
Ruland W. Colloid Polym Sci, 1977, 255: 417-427. doi:10.1007/bf01536457http://dx.doi.org/10.1007/bf01536457
Ruland W. Colloid Polym Sci, 1978, 256: 932-936. doi:10.1007/bf01383589http://dx.doi.org/10.1007/bf01383589
Qiao Y N, Schulz M, Wang H, Chen R, Schafer M, Thurn-Albrecht T, Men Y F. Polymer, 2020, 195: 122425. doi:10.1016/j.polymer.2020.122425http://dx.doi.org/10.1016/j.polymer.2020.122425
Porod G. Kolloid Z, 1951, 124: 83-114. doi:10.1007/bf01512792http://dx.doi.org/10.1007/bf01512792
Albrecht T, Strobl G. Macromolecules, 1995, 28: 5827-5833. doi:10.1021/ma00121a020http://dx.doi.org/10.1021/ma00121a020
Albrecht T, Strobl G. Macromolecules, 1995, 28: 5267-5273. doi:10.1021/ma00121a020http://dx.doi.org/10.1021/ma00121a020
Tchoubar D, Mering J. J Appl Crystallogr, 1969, 2: 128-138
Stribeck N. Colloid Polym Sci, 2002, 280: 254-259. doi:10.1007/s00396-001-0601-zhttp://dx.doi.org/10.1007/s00396-001-0601-z
Li X K, Lu Y, Wang H, Poselt E, Eling B, Men Y F. Eur Polym J, 2017, 97: 423-436. doi:10.1016/j.eurpolymj.2017.10.014http://dx.doi.org/10.1016/j.eurpolymj.2017.10.014
Bonart R. Kolloid Z, 1966, 211: 14-33. doi:10.1007/bf01500205http://dx.doi.org/10.1007/bf01500205
Stribeck A, Li X, Zeinolebadi A, Pöselt E, Eling B, Funari S. Macromol Chem Phys, 2015, 216: 2318-2330. doi:10.1002/macp.201500255http://dx.doi.org/10.1002/macp.201500255
Li X K, Lu Y, Sun Y Y, Che Y H, Men Y F. Ind Eng Chem Res, 2017, 56: 8535-8542. doi:10.1021/acs.iecr.7b01757http://dx.doi.org/10.1021/acs.iecr.7b01757
Stribeck A, Pöselt E, Eling B, Jokari-Sheshdeh F, Hoell A. Eur Polym J, 2017, 94: 340-353. doi:10.1016/j.eurpolymj.2017.07.020http://dx.doi.org/10.1016/j.eurpolymj.2017.07.020
Stribeck N. Colloid Polym Sci, 1993, 271: 1007-1023. doi:10.1007/bf00659290http://dx.doi.org/10.1007/bf00659290
Hu J, Wang J P, Gowd E B, Yuan Y, Zhang T P, Duan Y X, Hu W B, Zhang J M. Polymer, 2019, 167: 122-129. doi:10.1016/j.polymer.2019.01.088http://dx.doi.org/10.1016/j.polymer.2019.01.088
Wang Y, Zhao J, Qu M J, Guo J, Yang S G, Lei J, Xu J Z, Chen Y H, Li Z M, Hsiao B S. Polymer, 2018, 134: 196-203. doi:10.1016/j.polymer.2017.11.040http://dx.doi.org/10.1016/j.polymer.2017.11.040
Zhao H Y, Li L F, Zhang Q L, Xia Z J, Yang E J, Wang Y S, Chen W, Meng L P, Wang D L, Li L B. Biomacromolecules, 2019, 20: 3895-3907. doi:10.1021/acs.biomac.9b00975http://dx.doi.org/10.1021/acs.biomac.9b00975
Lu Y, Thompson G, Lyu D, Caton-Rose P, Coates P, Men Y F. Soft Matter, 2018, 14: 4413-4650. doi:10.1039/c7sm02446khttp://dx.doi.org/10.1039/c7sm02446k
Tang Y J, Jiang Z Y, Men Y F, An L J, Enderle H F, Lilge D, Roth S V, Gehrke R, Rieger J. Polymer, 2007, 48: 5125-5132. doi:10.1016/j.polymer.2007.06.056http://dx.doi.org/10.1016/j.polymer.2007.06.056
Lei C H, Xu R J, Tian Z Q, Huang H H, Xie J Y, Zhu X Q. Macromolecules, 2018, 51: 3433-3442. doi:10.1021/acs.macromol.7b02335http://dx.doi.org/10.1021/acs.macromol.7b02335
Percus J K, Yevick G J. Phys Rev, 1958, 110: 1-13. doi:10.1103/physrev.110.1http://dx.doi.org/10.1103/physrev.110.1
Ashcroft N W, Lekner J. Phys Rev, 1966, 145: 83-90. doi:10.1103/physrev.145.83http://dx.doi.org/10.1103/physrev.145.83
Kinning D J, Thomas E L. Macromolecules, 1984, 17: 1712-1718. doi:10.1021/ma00139a013http://dx.doi.org/10.1021/ma00139a013
Han H Y, Li L, Wang W H, Tian Y C, Wang Y W, Wang J Y, von Klitzing R, Guo X H. Langmuir, 2017, 33: 9857-9865. doi:10.1021/acs.langmuir.7b02239http://dx.doi.org/10.1021/acs.langmuir.7b02239
Ye Z S, Li L, Zhao F, Tian Y C, Wang Y W, Yang Q S, Dai L H, Guo X H. J Polym Sci, Part B: Polym Phys, 2019, 57: 738-747. doi:10.1002/polb.24828http://dx.doi.org/10.1002/polb.24828
Yang Q S, Li L, Zhao F, Han H Y, Wang W H, Tian Y C, Wang Y W, Ye Z S, Guo X H. J Mater Sci, 2019, 54: 2552-2565. doi:10.1007/s10853-018-2996-7http://dx.doi.org/10.1007/s10853-018-2996-7
Ruland W. J Appl Phys, 1967, 38: 3585-3589. doi:10.1063/1.1710176http://dx.doi.org/10.1063/1.1710176
Ruland W. J Polym Sci Polym Symp, 1969, 28: 143-151. doi:10.1002/polc.5070280113http://dx.doi.org/10.1002/polc.5070280113
Liao T, Zhao X T, Yang X, Coates P, Whiteside B, Jiang Z Y, Men Y F. Polymer, 2019, 180: 121698. doi:10.1016/j.polymer.2019.121698http://dx.doi.org/10.1016/j.polymer.2019.121698
Zhao J Y, Yang X, Sun Y Y, Men Y F. Ind Eng Chem Res, 2018, 57: 4967-4977. doi:10.1021/acs.iecr.8b00194http://dx.doi.org/10.1021/acs.iecr.8b00194
Lu Y, Wang Y T, Chen R, Zhao J Y, Jiang Z Y, Men Y F. Macromolecules, 2015, 48: 5799-5806. doi:10.1021/acs.macromol.5b00818http://dx.doi.org/10.1021/acs.macromol.5b00818
Fischer S, Diesner T, Rieger B, Marti O. J Appl Crystallogr, 2010, 43: 603-610. doi:10.1107/s0021889810006163http://dx.doi.org/10.1107/s0021889810006163
Chen R, Lu Y, Jiang Z Y, Men Y F. J Phys Chem B, 2018, 122: 4159-4168. doi:10.1021/acs.jpcb.8b00060http://dx.doi.org/10.1021/acs.jpcb.8b00060
Chen R, Lu Y, Zhao J Y, Jiang Z Y, Men Y F. J Polym Sci, Part B: Polym Phys, 2016, 54: 2007-2014. doi:10.1002/polb.24108http://dx.doi.org/10.1002/polb.24108
Mildner D F R, Hall P L. J Phys D: Appl Phys, 1986, 19: 1535-1545. doi:10.1088/0022-3727/19/8/021http://dx.doi.org/10.1088/0022-3727/19/8/021
Pizzorusso G, Fratini E, Eiblmeier J, Giorgi R, Chelazzi D, Chevalier A, Baglioni P. Langmuir, 2012, 28: 3952-3961. doi:10.1021/la2044619http://dx.doi.org/10.1021/la2044619
Zhao X Y, Liang J, Shan G R, Pan P J. J Mater Chem B, 2019, 7: 324-333. doi:10.1039/c8tb02803fhttp://dx.doi.org/10.1039/c8tb02803f
0
浏览量
1072
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构