浏览全部资源
扫码关注微信
1.青岛科技大学高分子科学与工程学院 橡塑材料与工程教育部重点实验室 青岛 266042
2.北京化工大学 碳纤维及复合材料教育部重点实验室 北京 100029
3.北京航空航天大学化学学院 北京 100191
[ "张建明,男,1973年生. 山东省泰山学者特聘教授,博士生导师. 2003年毕业于中科院化学所并取得博士学位,师从著名的光谱学家沈德言先生. 自2009年1月起在青岛科技大学工作. 研究方向为高分子凝聚态结构及其相变行为、生物质纳米材料制备及功能复合材料构筑,已发表SCI学术论文130余篇,所发论文被引6000余次,H-指数为38,获批中国发明专利20余件. 先后获日本JSPS博后奖、德国洪堡资深学者、山东省泰山学者、山东省杰出青年、山东省自然科学二等奖及中国石化联合会青年科技突出贡献奖等荣誉或奖励." ]
纸质出版日期:2021-09-20,
网络出版日期:2021-06-02,
收稿日期:2020-11-19,
修回日期:2020-01-11,
扫 描 看 全 文
袁媛,王梦梵,曲云菲等.拉曼光谱技术在高分子表征研究中的应用,[J].高分子学报,2021,52(09):1206-1220.
Yuan Yuan,Wang Meng-fan,Qu Yun-fei,et al.Application of Raman Spectroscopy in the Characterization of Polymers[J].ACTA POLYMERICA SINICA,2021,52(09):1206-1220.
袁媛,王梦梵,曲云菲等.拉曼光谱技术在高分子表征研究中的应用,[J].高分子学报,2021,52(09):1206-1220. DOI: 10.11777/j.issn1000-3304.2020.20251.
Yuan Yuan,Wang Meng-fan,Qu Yun-fei,et al.Application of Raman Spectroscopy in the Characterization of Polymers[J].ACTA POLYMERICA SINICA,2021,52(09):1206-1220. DOI: 10.11777/j.issn1000-3304.2020.20251.
拉曼光谱作为一种强大的工具,被广泛应用于聚合物结构的表征. 随着共振拉曼光谱、扫描角度拉曼光谱、高分辨率拉曼成像、极化拉曼光谱、表面增强拉曼散射等拉曼技术的迅速发展,拉曼光谱的应用范围不断扩大. 本文首先介绍了拉曼光谱设备的基本原理和组成,总结了拉曼技术的实验技巧和数据处理中需要注意的问题,讨论了红外光谱和拉曼光谱的区别,在此基础上,综述了近十年来拉曼技术在聚合物结构表征领域的最新应用和研究进展. 其应用包括以下六个方面:高分子链的构象、聚合物的聚集状态、聚合物结晶度的计算、高分子链的取向、外场作用下的结构转化、高分子共混物化学或物理成分的识别. 最后,对拉曼光谱在聚合物研究中的发展进行了展望. 希望本文能够对试图从拉曼光谱中获取聚合物结构信息的学者有所帮助.
As a powerful tool
Raman spectroscopy is widely used in the characterization of polymer structures. Along with the rapid development of Raman technology such as resonance Raman spectroscopy
scanning angle Raman spectroscopy
high-resolution Raman imaging
polarized Raman spectroscopy
and surface-enhanced Raman scattering
the application range of Raman spectroscopy has been continuously extended. In this paper
we first introduced the basic principle and the composition of the Raman equipment
and then we summarized the experimental skills of Raman technology and the issues that need attention in data processing. The difference between the infrared spcectroscopy and the Raman spectroscopy was discussed. Afterwards
we reviewed the latest applications and research progress in the fields of polymer structure characterization by using Raman technology in recent decade. The applications include the following six aspects: the macromolecular chain conformation
the aggregation state of polymers
the calculation of the polymer crystallinity
the macromolecular chain orientation
the structural transformation under the external fields
and the identification of the chemical or physical composition in polymer blends. Last
the development of Raman spectroscopy in polymer research was prospected. It is hoped that this review could be helpful for the one who tried to obtain the information about the polymer structure from Raman spectroscopy.
拉曼光谱结构表征原理应用
Raman spectroscopyStructure characterizationPrincipleApplication
Zhang Shulin(张树霖). Raman Spectroscopy with Low Dimensional Nanometer Semiconductors(拉曼光谱学与低维纳米半导体). Beijing(北京): Science Press(科学出版社), 2008. 3-35
Koenig J L. Spectroscopy of Polymers. Netherlands: Elsevier, 1999. 207-252. doi:10.1016/b978-044410031-3/50005-0http://dx.doi.org/10.1016/b978-044410031-3/50005-0
Chalmers J, Griffiths P. Handbook of Vibrational Spectroscopy, 5 volumes set. New Jersey: John Wiley & Sons, 2002. 1-17
Sasic S, Ozaki Y. Raman, Infrared, and Near-Infrared Chemical Imaging. New Jersey: John Wiley & Sons, 2011. 1-21. doi:10.1002/9780470768150http://dx.doi.org/10.1002/9780470768150
Schrader B. Infrared and Raman Spectroscopy: Methods and Applications. New Jersey: John Wiley & Sons, 2008. 7-61
McCreery R L. Raman Spectroscopy for Chemical Analysis. New Jersey: John Wiley & Sons, 2000. 15-30. doi:10.1002/0471721646http://dx.doi.org/10.1002/0471721646
Colthup N B, Daly L H, Wiberley S E. J Am Chem Soc, 1965, 87(5): 1155-1156
Wilson E B, Decius J C, Cross P C, Sundheim B R. J Electrochem Soc, 1955, 102(9): 235C. doi:10.1149/1.2430134http://dx.doi.org/10.1149/1.2430134
Tadokoro H. Structure of Crystalline Polymers. New Jersey: John Wiley & Sons, 1979. 179-322
Larkin P. Infrared and Raman Spectroscopy. Netherlands: Elsevier, 2011. 7-25. doi:10.1016/b978-0-12-386984-5.10002-3http://dx.doi.org/10.1016/b978-0-12-386984-5.10002-3
Dieing T, Hollricher O, Toporski J. Confocal Raman Microscopy. Berlin: Springer, 2011. doi:10.1007/978-3-642-12522-5http://dx.doi.org/10.1007/978-3-642-12522-5
Gautam R, Samuel A, Sil S, Chaturvedi D, Dutta A, Ariese F, Umapathy S. Curr Sci, 2015: 341-356. doi:10.1140/epjti/s40485-015-0018-6http://dx.doi.org/10.1140/epjti/s40485-015-0018-6
Gao J, Thomas A K, Johnson R, Guo H, Grey J K. Chem Mater, 2014, 26(15): 4395-4404. doi:10.1021/cm501252yhttp://dx.doi.org/10.1021/cm501252y
Martin E, Bérubé N, Provencher F, Côté M, Silva C, Doorn S, Grey J. J Mater Chem C, 2015, 3(23): 6058-6066. doi:10.1039/c5tc00847fhttp://dx.doi.org/10.1039/c5tc00847f
Yu W, Zhou J, Bragg A E. J Phys Chem Lett, 2012, 3(10): 1321-1328. doi:10.1021/jz3003298http://dx.doi.org/10.1021/jz3003298
Gao Y, Grey J K. J Am Chem Soc, 2009, 131(28): 9654-9662. doi:10.1021/ja900636zhttp://dx.doi.org/10.1021/ja900636z
Gao Y, Martin T P, Thomas A K, Grey J K. J Phys Chem Lett, 2010, 1(1): 178-182. doi:10.1021/jz900038chttp://dx.doi.org/10.1021/jz900038c
Gao J, Grey J K. J Chem Phys, 2013, 139(4): 4903
Gao J, Thomas A, Yang J, Aldaz C, Yang G, Qin Y, Grey J. J Phys Chem C, 2015, 119(16): 8980-8990. doi:10.1021/acs.jpcc.5b02166http://dx.doi.org/10.1021/acs.jpcc.5b02166
Wang M, Vantasin S, Wang J, Sato H, Zhang J, Ozaki Y. Macromolecules, 2017, 50(8): 3377-3387. doi:10.1021/acs.macromol.7b00139http://dx.doi.org/10.1021/acs.macromol.7b00139
Zhang Z , Qin J , Diao H , Huang S, Yin J, Zhang H, Duan Y, Zhang J. Carbon, 2020, 161:316-322. doi:10.1016/j.carbon.2020.01.078http://dx.doi.org/10.1016/j.carbon.2020.01.078
Badi N, Khasim S, Roy A S. J Mater Sci Mater Electron, 2016, 27(6): 6249-6257. doi:10.1007/s10854-016-4556-8http://dx.doi.org/10.1007/s10854-016-4556-8
Mannanov A A, Bruevich V V, Feldman E V, Trukhanov V A, Pshenichnikov M S, Paraschuk D Y. J Phys Chem C, 2018, 122(34): 19289-19297. doi:10.1021/acs.jpcc.8b03136http://dx.doi.org/10.1021/acs.jpcc.8b03136
Agarwal U P, Reiner R S, Ralph S A. Cellulose, 2010, 17(4): 721-733. doi:10.1007/s10570-010-9420-zhttp://dx.doi.org/10.1007/s10570-010-9420-z
Wang W, Shao F, Kroger M, Zenobi R, Schluter A D. J Am Chem Soc, 2019, 141(25): 9867-9871. doi:10.1021/jacs.9b01765http://dx.doi.org/10.1021/jacs.9b01765
Richard-Lacroix M, Pellerin C. Vib Spectrosc, 2017, 91: 92-98. doi:10.1016/j.vibspec.2016.09.002http://dx.doi.org/10.1016/j.vibspec.2016.09.002
Richard-Lacroix M, Pellerin C. Macromolecules, 2012, 45(4): 1946-1953. doi:10.1021/ma202749dhttp://dx.doi.org/10.1021/ma202749d
Richard-Lacroix M, Pellerin C. Macromolecules, 2013, 46(14): 5561-5569. doi:10.1021/ma400955uhttp://dx.doi.org/10.1021/ma400955u
Papkov D, Pellerin C, Dzenis Y A. Macromolecules, 2018, 51(21): 8746-8751. doi:10.1021/acs.macromol.8b01869http://dx.doi.org/10.1021/acs.macromol.8b01869
Svenningsson L, Lin Y C, Karlsson M, Martinelli A, Nordstierna L. Macromolecules, 2019, 52(10): 3918-3924. doi:10.1021/acs.macromol.9b00520http://dx.doi.org/10.1021/acs.macromol.9b00520
Park M, Wong Y S, Park J, Venkatraman S, Srinivasarao M. Macromolecules, 2011, 44(7): 2120-2131. doi:10.1021/ma101553vhttp://dx.doi.org/10.1021/ma101553v
Jin Y, Kotula A P, Snyder C R, Hight Walker A R, Migler K B, Lee Y J. Macromolecules, 2017, 50(16): 6174-6183. doi:10.1021/acs.macromol.7b01055http://dx.doi.org/10.1021/acs.macromol.7b01055
Kasiouli S, Di Stasio F, McDonnell S O, Constantinides C P, Anderson H L, Cacialli F, Hayes S C. J Phys Chem B, 2013, 117(18): 5737-5747. doi:10.1021/jp400732hhttp://dx.doi.org/10.1021/jp400732h
Winfield J M, Donley C L, Friend R H, Kim J S. J Appl Phys, 2010, 107(2): 1073. doi:10.1063/1.3276257http://dx.doi.org/10.1063/1.3276257
Magnanelli T J, Bragg A E. J Phys Chem Lett, 2015, 6(3): 438-445. doi:10.1021/jz502605jhttp://dx.doi.org/10.1021/jz502605j
López-Barrón C R, Zeng Y, Schaefer J J, Eberle A P R, Lodge T P, Bates F S. Macromolecules, 2017, 50(9): 3627-3636. doi:10.1021/acs.macromol.7b00504http://dx.doi.org/10.1021/acs.macromol.7b00504
Kida T, Hiejima Y, Nitta K. Macromolecules, 2019, 52(12): 4590-4600. doi:10.1021/acs.macromol.8b02740http://dx.doi.org/10.1021/acs.macromol.8b02740
Razzell-Hollis J, Thiburce Q, Tsoi W C, Kim J S. ACS Appl Mater Interfaces, 2016, 8(45): 31469-31481. doi:10.1021/acsami.6b12124http://dx.doi.org/10.1021/acsami.6b12124
Linde S, Carella A, Shikler R. Macromolecules, 2012, 45(3): 1476-1482. doi:10.1021/ma201867ehttp://dx.doi.org/10.1021/ma201867e
McManamon C, Delaney P, Kavanagh C, Wang J J, Rasappa S, Morris M A. Langmuir, 2013, 29(19): 5905-5910. doi:10.1021/la400402ahttp://dx.doi.org/10.1021/la400402a
Kotzianova A, Rebicek J, Mojzes P, Pokorny M, Palacky J, Hrbac J. PolymerVelebny V, 2014, 55(20): 5036-5042. doi:10.1016/j.polymer.2014.08.032http://dx.doi.org/10.1016/j.polymer.2014.08.032
Janko M, Jocher M, Boehm A, Babel L, Bump S, Biesalski M, Meckel T, Stark R W. Biomacromolecules, 2015, 16(7): 2179-2187. doi:10.1021/acs.biomac.5b00565http://dx.doi.org/10.1021/acs.biomac.5b00565
Hu J, Wang J, Wang M, Ozaki Y, Sato H, Zhang J. Polymer, 2019, 172: 1-6. doi:10.1016/j.polymer.2019.03.049http://dx.doi.org/10.1016/j.polymer.2019.03.049
Gao Y, Martin T P, Thomas A K, Grey J K. J Phys Chem Lett, 2010, 1(1): 178-182. doi:10.1021/jz900038chttp://dx.doi.org/10.1021/jz900038c
Grey J K. Acc Chem Res, 2019, 52(8): 2221-2231. doi:10.1021/acs.accounts.9b00088http://dx.doi.org/10.1021/acs.accounts.9b00088
Nixdorf J, Di Florio G, Bröckers L, Borbeck C, Hermes H E, Egelhaaf S U, Gilch P. Macromolecules, 2019, 52(13): 4997-5005. doi:10.1021/acs.macromol.9b00205http://dx.doi.org/10.1021/acs.macromol.9b00205
Xue L, Li W, Hoffmann G G, Goossens J G P, Loos J, de With G. Macromolecules, 2011, 44(8): 2852-2858. doi:10.1021/ma101651rhttp://dx.doi.org/10.1021/ma101651r
Lee Y J, Snyder C R, Forster A M, Cicerone M T, Wu W L. ACS Macro Lett, 2012, 1(11): 1347-1351. doi:10.1021/mz300546ehttp://dx.doi.org/10.1021/mz300546e
Raupp S M, Siebel D K, Kitz P G, Scharfer P, Schabel W. Macromolecules, 2017, 50(17): 6819-6828. doi:10.1021/acs.macromol.7b01037http://dx.doi.org/10.1021/acs.macromol.7b01037
Meyer M, McKee K, Nguyen V H T, Smith E. J Phys Chem C, 2012, 116(47): 24987-24992. doi:10.1021/jp308882whttp://dx.doi.org/10.1021/jp308882w
Meyer M W, Larson K L, Mahadevapuram R C, Lesoine M D, Carr J A, Chaudhary S, Smith E A. ACS Appl Mater Interfaces, 2013, 5(17): 8686-8693. doi:10.1021/am4023225http://dx.doi.org/10.1021/am4023225
James D T, Kjellander B K C, Smaal W T T, Gelinck G H, Combe C, McCulloch I, Wilson R, Burroughes J H, Bradley D D C, Kim J. ACS Nano, 2011, 5(12): 9824-9835. doi:10.1021/nn203397mhttp://dx.doi.org/10.1021/nn203397m
0
浏览量
607
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构