浏览全部资源
扫码关注微信
1.青岛科技大学 教育部/山东橡塑重点实验室 青岛 266042
2.北京化工大学 碳纤维及复合材料教育部重点实验室 北京 100029
[ "扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究." ]
纸质出版日期:2021-10-20,
网络出版日期:2021-06-29,
收稿日期:2020-11-28,
修回日期:2020-12-31,
扫 描 看 全 文
扈健,王梦梵,吴婧华.X射线晶体结构解析技术在高分子表征研究中的应用[J].高分子学报,2021,52(10):1390-1405.
Hu Jian,Wang Meng-fan,Wu Jing-hua.X-ray Diffraction Methodology for Crystal Structure Analysis in Characterization of Polymer[J].Acta Polymerica Sinica,2021,52(10):1390-1405.
扈健,王梦梵,吴婧华.X射线晶体结构解析技术在高分子表征研究中的应用[J].高分子学报,2021,52(10):1390-1405. DOI: 10.11777/j.issn1000-3304.2020.20258.
Hu Jian,Wang Meng-fan,Wu Jing-hua.X-ray Diffraction Methodology for Crystal Structure Analysis in Characterization of Polymer[J].Acta Polymerica Sinica,2021,52(10):1390-1405. DOI: 10.11777/j.issn1000-3304.2020.20258.
高分子材料结构具有多尺度的复杂性,解析高分子材料各级微观结构并建立结构与性能之间的关系是高分子研究领域的重要目标和挑战. 对结晶性高分子而言,第一步工作就是对其晶体结构进行表征和解析,X射线衍射法是高分子晶体结构解析中最经典也是最常用的方法. 本文主要介绍X射线衍射等技术在高分子晶体解析中的基本原理和测试表征方法,总结概述近些年来晶体结构解析在高分子领域内的主要进展以及应用. 通过晶体结构解析的方法建立可靠的高分子晶体结构,不仅可以应用于新合成结晶高分子结构的解析,也可以进一步研究高分子各级结构在外场作用下的演变,探明微观结构与宏观性能之间的关系.
Because of complicated multi-scale structure for the polymer material
studying microscopic structure of polymer and clarifying the relationship between structure and physical property are the major goal and challenge in the polymer science. For the crystalline polymer
crystal structure should be analyzed and established at first. X-ray diffraction is the most classical and conventional method for the crystal structure analysis in polymers
which gives the detailed information of molecular chain conformation
chain aggregation in the crystal lattice. This article reviews the main principles and experimental techniques of X-ray diffraction methodology
and also summarizes the progress and application in the polymer field over the past decade. By utilizing X-ray diffraction method
the crystal structure of newly synthesized crystalline polymers can be analyzed
which may help us recognize crystal phase transition and hierarchical structure evolution by the external force
and also study towards the microscopic clarification of structure-property relationship. By combining other techniques such as neutron scattering
electron diffraction
nuclear magnetic resonance
vibrational spectroscopy and computer simulation
the crystal structure of polymers with higher reliability can be established
leading us to the highly quantitative discussion from the molecular level. For this purpose
the study of polymer crystal structure is still on the way
and the contents may be helpful for the beginners and researchers.
结晶性高分子晶体结构X射线衍射结构与性能
Crystalline polymerCrystal structureX-ray diffraction methodStructure and property
Strobl G. The Physics of Polymers. 3th ed. New York: Springer, 2007. 166-222
Piorkowska E, Rutledge G C. Handbook of Polymer Crystallization. Hoboken, New Jersey: John Wiley & Sons, Inc, 2013. 31-67. doi:10.1002/9781118541838http://dx.doi.org/10.1002/9781118541838
Hu Wenbing(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Industry Press(化学工业出版社), 2013. 1-15. doi:10.1007/978-3-7091-0670-9_10http://dx.doi.org/10.1007/978-3-7091-0670-9_10
Vasile C. Handbook of Polyolefins. 2nd ed. New York: Marcel Dekker, Inc, 2000. 175-182
Lotz B, Miyoshi T, Cheng S Z D. Macromolecules. 2017, 50(16): 5995-6025. doi:10.1021/acs.macromol.7b00907http://dx.doi.org/10.1021/acs.macromol.7b00907
Tashiro K, Kobayashi M, Tadokoro H, Fukada E. Macromolecules, 1980, 13(3): 691-698. doi:10.1021/ma60075a040http://dx.doi.org/10.1021/ma60075a040
Men Y, Li L. Polymer Crystallization, 2019, 2(2): e10067. doi:10.1002/pcr2.10067http://dx.doi.org/10.1002/pcr2.10067
Tadokoro H. Structure of Crystalline Polymers. Malabar. Florida: Robert E. Krieger Publishing Company, 1990. 19-178
Rosa C D, Auriemma F. Crystals and Crystalline in Polymers. Hoboken, New Jersey: John Wiley & Sons, Inc, 2014. 88-184
Alexander L L. X-ray Diffraction Methods in Polymer Science. New York: John Wiley & Sons, Inc, 1969
Mo Zhishen(莫志深), Zhang Hongfang(张宏放), Zhang Jidong(张吉东). Structure of Crystalline Polymers by X-Ray Diffraction(晶态聚合物结构与X射线衍射). 2nd ed. Beijing(北京): Science Press(科学出版社), 2010. 146-206
Hohn T. International Table for Crystallography. 5th ed. Netherlands: Springer, 2006
Wilson C C. Single Crystal Neutron Diffraction from Molecular Materials. Singapore: World Sci. Pub. Co. Pte. Ltd, 2000. doi:10.1142/4029http://dx.doi.org/10.1142/4029
Tashiro K, Kusaka K, Hosoya T, Ohhara T, Hanesaka M, Yoshizawa Y, Yamamoto H, Niimura N, Tanaka I, Kurihara K, Kuroki R, Tamada T. Macromolecules, 2018, 51(11): 3911-3922. doi:10.1021/acs.macromol.8b00650http://dx.doi.org/10.1021/acs.macromol.8b00650
Dorset D L. Structural Electron Crystallography. New York: Springer Science+Business Media, 1995. 95-133. doi:10.1007/978-1-4757-6621-9_4http://dx.doi.org/10.1007/978-1-4757-6621-9_4
Hodgkinson P. Prog Nucl Magn Reson Spectrosc, 2020, 118-119: 10-53. doi:10.1016/j.pnmrs.2020.03.001http://dx.doi.org/10.1016/j.pnmrs.2020.03.001
Mehring M. Principles of High Resolution NMR in Solids. 2nd ed. New York: Springer-Verlag Berlin Heidelberg, 1983. 1‒62
Zhang J, Tashiro K, Tsuji H, Domb A J. Macromolecules, 2008, 41: 1352-1357. doi:10.1021/ma0706071http://dx.doi.org/10.1021/ma0706071
Tashiro K, Hu J, Wang H, Hanesaka M, Saiani A. Macromolecules, 2016, 49(4): 1392-1404. doi:10.1021/acs.macromol.5b02785http://dx.doi.org/10.1021/acs.macromol.5b02785
Tashiro K, Kusaka K, Yamamoto H, Hanesaka M. Macromolecules, 2020, 53(15): 6656-6671. doi:10.1021/acs.macromol.0c00839http://dx.doi.org/10.1021/acs.macromol.0c00839
Ru J F, Yang S G, Zhou D, Yin H M, Lei J, Li Z M. Macromolecules, 2016, 49(10): 3826-3837. doi:10.1021/acs.macromol.6b00595http://dx.doi.org/10.1021/acs.macromol.6b00595
Li X J, Zhong G J, Li Z M. Chinese J Polym Sci, 2010, 28(3): 357-366. doi:10.1007/s10118-010-9015-zhttp://dx.doi.org/10.1007/s10118-010-9015-z
Chen Y H, Yang H Q, Yang S, Zhang Q Y, Li Z M. Chinese J Polym Sci, 2017, 35(12): 1540-1551. doi:10.1007/s10118-017-1990-xhttp://dx.doi.org/10.1007/s10118-017-1990-x
Wang Y, Na B, Zhang Q, Tan H, Xiao Y, Li L B, Fu Q. J Mater Sci, 2005, 40(24): 6409-6415. doi:10.1007/s10853-005-1746-9http://dx.doi.org/10.1007/s10853-005-1746-9
Yang S G, Chen Y H, Deng B W, Lei J, Li L B, Li Z M. Macromolecules, 2017, 50(12): 4807-4816. doi:10.1021/acs.macromol.7b00041http://dx.doi.org/10.1021/acs.macromol.7b00041
Petermann J, Gohil R M. J Mater Sci, 1979, 14: 2260-2264. doi:10.1007/bf00688435http://dx.doi.org/10.1007/bf00688435
Li L, Xin R, Li H H, Sun X L, Ren Z J, Huang Q G, Yan S K. Macromolecules, 2020, 53(19): 8487-8493. doi:10.1021/acs.macromol.0c01456http://dx.doi.org/10.1021/acs.macromol.0c01456
Yoshiharu N, Shigenori K, Masahisa W, Takeshi O. Macromolecules, 1997, 30(20): 6395-6397. doi:10.1021/ma970503yhttp://dx.doi.org/10.1021/ma970503y
Sikorski P, Hori R, Masahisa W. Biomacromolecules, 2009, 10(5): 1100-1105
Yoshiharu N, Yasutomo N, Masahisa W. Macromolecules, 2011, 44(4): 950-957. doi:10.1021/ma102240rhttp://dx.doi.org/10.1021/ma102240r
Davis G T, Mckinney J E, Broadhurst M G, Roth S C. J Appl Phys, 1978, 49(10): 4998-5002. doi:10.1063/1.324446http://dx.doi.org/10.1063/1.324446
Sugiyama J, Chanzy H, Maret G. Macromolecules, 1992, 25(16): 4232-4234. doi:10.1021/ma00042a032http://dx.doi.org/10.1021/ma00042a032
Wasanasuk K, Tashiro K, Hanesaka M, Ohhara T, Kurihara K, Kuroki R, Tamada T, Ozeki T, Kanamoto T. Macromolecules, 2011, 44(16): 6441-6452. doi:10.1021/ma2006624http://dx.doi.org/10.1021/ma2006624
Sun H. J Phys Chem B, 1998, 102: 7338-7364. doi:10.1021/jp980939vhttp://dx.doi.org/10.1021/jp980939v
Shao J, Liu Y L, Xiang S, Bian X C, Sun J R, Li G, Chen X S, Hou H Q. Chinese J Polym Sci, 2015, 33(12):1713-1720. doi:10.1007/s10118-015-1715-yhttp://dx.doi.org/10.1007/s10118-015-1715-y
Zhang Xiuqin(张秀芹), Xiong Zujiang(熊祖江), Liu Guoming(刘国明), Yin Yongai(尹永爱), Wang Rui(王锐), Wang Dujin(王笃金). Acta Polymerica Sinica (高分子学报), 2014, (8): 1048-1055
Li Xiaolu(李晓露), Wang Rui(王锐), Yang Chunfang(杨春芳), Dong Zhenfeng(董振峰), Zhang Xiuqin(张秀芹), Wang Dujin(王笃金), Wang Deyi(王德义). Acta Polymerica Sinica(高分子学报), 2018, (5): 598-606
Zhou W, Wang K, Wang S, Yuan S, Chen W, Konishi T, Miyoshi T. ACS Macro Lett, 2018, 7(6): 667-671. doi:10.1021/acsmacrolett.8b00297http://dx.doi.org/10.1021/acsmacrolett.8b00297
Chen W, Wang S, Zhang W, Ke Y, Hong Y L, Miyoshi T. ACS Macro Lett, 2015, 4(11): 1264-1267. doi:10.1021/acsmacrolett.5b00685http://dx.doi.org/10.1021/acsmacrolett.5b00685
Pan P, Yang J, Shan G, Bao Y, Weng Z, Cao A, Yazawa K, Inoue Y. Macromolecules, 2012, 45(1): 189-197. doi:10.1021/ma201906ahttp://dx.doi.org/10.1021/ma201906a
Tsuji H, Tashiro K, Bouapao L, Hanesaka M. Polymer, 2012, 53: 747-754. doi:10.1016/j.polymer.2011.12.023http://dx.doi.org/10.1016/j.polymer.2011.12.023
Tashiro K, Kouno N, Wang H, Tsuji H. Macromolecules, 2017, 50(20): 8048-8065. doi:10.1021/acs.macromol.7b01468http://dx.doi.org/10.1021/acs.macromol.7b01468
Zhang J, Tashiro K, Tsuji H, Domb A J. Macromolecules, 2007, 40(4): 1049-1054. doi:10.1021/ma061693shttp://dx.doi.org/10.1021/ma061693s
Tashiro K, Wang H, Kouno N, Koshobu J, Watanabe K. Macromolecules, 2017, 50(20): 8066-8071. doi:10.1021/acs.macromol.7b01468http://dx.doi.org/10.1021/acs.macromol.7b01468
Tashiro K, Kitai H, Saharin S M, Shimazu A, Itou T. Macromolecules, 2015, 48(7): 2138-2148. doi:10.1021/acs.macromol.5b00119http://dx.doi.org/10.1021/acs.macromol.5b00119
Saharin S M, Takahama T, Nonogaki S, Saito K, Tashiro K. Macromolecules, 2015, 48(24): 8867-8876. doi:10.1021/acs.macromol.5b01998http://dx.doi.org/10.1021/acs.macromol.5b01998
Zhang R, Zhang Q, Ji Y, Su F, Meng L, Qi Z, Lin Y, Li X, Chen X, Lv F, Li L. Soft Matter, 2018, 14, 2535-2546. doi:10.1039/c7sm02155khttp://dx.doi.org/10.1039/c7sm02155k
Saharin S M, Takahama T, Nonogaki S, Saito K, Tashiro K. Polymer, 2016, 89: 81-93. doi:10.1016/j.polymer.2016.02.035http://dx.doi.org/10.1016/j.polymer.2016.02.035
Takahama T, Saharin S M, Tashiro K. Polymer, 2016, 99: 566-579. doi:10.1016/j.polymer.2016.07.055http://dx.doi.org/10.1016/j.polymer.2016.07.055
Wang M, Takahama T, Tashiro K. Macromolecules, 2020, 53(11): 4395-4406. doi:10.1021/acs.macromol.0c00612http://dx.doi.org/10.1021/acs.macromol.0c00612
Tashiro K, Yamamoto H, Sugimoto K. Polymer, 2018, 153: 474-484. doi:10.1016/j.polymer.2018.08.028http://dx.doi.org/10.1016/j.polymer.2018.08.028
Wasanasuk K, Tashiro K. Macromolecules, 2012, 45(17): 7019-7026. doi:10.1021/ma3010982http://dx.doi.org/10.1021/ma3010982
Ratri P J, Tashiro K, Iguchi M. Polymer, 2012, 53(16): 3548-3558. doi:10.1016/j.polymer.2012.06.003http://dx.doi.org/10.1016/j.polymer.2012.06.003
Tasaki M, Yamamoto H, Yoshioka T, Hanesaka M, Ninh T H, Tashiro K, Jeon H J, Choi K B, Jeong H S, Song H H, Ree M H. Polymer, 2014, 55(5): 1228-1248. doi:10.1016/j.polymer.2014.01.024http://dx.doi.org/10.1016/j.polymer.2014.01.024
Tasaki M, Yamamoto H, Hanesaka M, Tashiro K, Boz E, Wagener K B, Ruiz-Orta C, Alamo R G. Macromolecules, 2014, 47(14): 4738-4749. doi:10.1021/ma5009622http://dx.doi.org/10.1021/ma5009622
Tasaki M, Yamamoto H, Yoshioka T, Hanesaka M, Ninh T H, Tashiro K, Jeon H J, Choi K B, Jeong H S, Song H H, Ree M H. Polymer, 2014, 55(7): 1799-1808. doi:10.1016/j.polymer.2014.01.058http://dx.doi.org/10.1016/j.polymer.2014.01.058
Bai H W, Zhang W Y, Deng H, Zhang Q, Fu Q. Macromolecules, 2011, 44(6): 1233-1237. doi:10.1021/ma102439thttp://dx.doi.org/10.1021/ma102439t
Wasanasuk K, Tashiro K. Polymer, 2011, 52(26): 6097-6109. doi:10.1016/j.polymer.2011.10.046http://dx.doi.org/10.1016/j.polymer.2011.10.046
Wasanasuk K, Tashiro K. Macromolecules, 2011, 44(24): 9650-9660. doi:10.1021/ma2017666http://dx.doi.org/10.1021/ma2017666
Wang H, Zhang J M, Tashiro K. Macromolecules, 2017, 50(8): 3285-3300. doi:10.1021/acs.macromol.7b00272http://dx.doi.org/10.1021/acs.macromol.7b00272
0
浏览量
850
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构