纸质出版日期:2021-5-3,
网络出版日期:2021-3-22,
收稿日期:2020-12-12,
修回日期:2021-2-5
扫 描 看 全 文
引用本文
阅读全文PDF
乙烯与共轭双烯烃催化共聚是实现聚烯烃功能化和提高聚烯烃可降解性的新途径. 本文用含有内电子给体的氯化镁负载Ziegler-Natta催化剂催化乙烯和异戊二烯(Ip)的共聚反应. 在乙烯压力为0.1 MPa、异戊二烯初始浓度([Ip]0) ⩽
Catalytic ethylene-conjugated diene copolymerization could be a new route of preparing functionalized polyolefins and degradable polyolefins. In this work a MgCl2-supported Ziegler-Natta catalyst containing internal electron donor was used to catalyze copolymerization of ethylene and isoprene (Ip). Under 1.01×105 Pa ethylene pressure and 0−2 mol/L initial Ip concentration ([Ip]0), the copolymerization product was composed of two fractions with remarkably different chain structures: one fraction with <2 mol% Ip content and high molecular weight, and the other fraction with >20 mol% Ip and low molecular weight. More than 75% of Ip units in both fractions had trans-1,4-configuration, showing high regio/stereo selectivity of the copolymerization. Copolymerization activity increased when [Ip]0 was raised from 0 mol/L to 1 mol/L, and decreased with further increase of [Ip]0 to 2 mol/L, meanwhile the fraction of high Ip content increased with [Ip]0. Copolymerization using TIBA as cocatalyst showed higher catalytic activity than using TEA, slightly lower Ip incorporation rate and narrower molecular weight distribution. Adding siloxane type external electron donor in the polymerization system strongly reduced the fraction of high Ip content, converting the bimodal composition distribution into monomodal one with the low Ip content copolymer as the major component.
MgCl2-supported Ziegler-Natta catalyst containing internal electron donor catalyzedtrans-1,4 stereoselective copolymerization of ethylene and isoprene, but the copolymer was composed of two fractions with distinct chain structures.
聚乙烯是用量最大的通用高分子,其中占聚乙烯产量80%的高密度聚乙烯和线型低密度聚乙烯的主要生产路线是用负载型Ziegler-Natta催化剂催化乙烯与少量α-烯烃共聚合. 为了克服聚乙烯极性低的缺点,对乙烯与极性单体催化共聚的研究近年来得到了广泛重视[
我们在之前的研究中使用不含内给电子体的TiCl4/MgCl2负载型Ziegler-Natta催化剂实现了乙烯-异戊二烯的共聚反应[
所有对水、氧敏感物质的实验操作均在高纯氮气环境下使用标准Schlenk技术进行. 用于聚合的Ziegler-Natta催化剂为商品化的TiCl4/ID/MgCl2聚丙烯催化剂 (内给电子体ID为邻苯二甲酸二正丁酯),Ti含量为2.7 wt%. 助催化剂为三乙基铝(TEA,Albemarle公司,97 wt%)和三异丁基铝(TIBA,Albemarle公司,97 wt%),使用前稀释成2 mol/L的正庚烷溶液. 正庚烷(上海泰坦科技股份有限公司)经溶剂净化柜除杂后,在N2气氛下用钠/二苯甲酮回流后蒸出使用. 乙烯(聚合级,杭州民星化工科技公司供应)经填充分子筛和脱氧剂的净化柱纯化后使用. 异戊二烯(东京化学工业有限公司)在使用前先蒸馏至Schlenk烧瓶中,并在N2气氛下储存. 其他化学品均为市购分析纯试剂,未经进一步纯化.
共聚合反应在配备磁力搅拌子的100 mL Schlenck烧瓶中进行. 反应瓶先经高真空(100 Pa)下加热干燥,之后冷却至室温并用氮气置换3次,随后用乙烯置换3次后,将乙烯充满烧瓶. 先将正庚烷(约40 mL)和设定量的异戊二烯用注射器注入烧瓶中,然后加入助催化剂(TEA或TIBA溶液,约1.5 mL),最后用10 mL正庚烷将称量好的催化剂冲入反应瓶,开始聚合反应. 反应在乙烯压力0.1 MPa、温度60 °C条件下进行0.5 h. 反应结束后,将产物倒入300 mL酸化乙醇(V(乙醇)/V(盐酸)=95/5)灭活催化剂并沉淀出聚合物. 聚合产物经抽滤、乙醇洗涤并重新过滤后收集到样品瓶中,经60 °C下真空干燥8 h后称重.
共聚物样品的分级通过Kumagawa型索氏提取器进行. 用250 mL沸腾正庚烷将约0.4 g聚合物抽提12 h,得到正庚烷不溶级分(C7-ins)和正庚烷可溶级分(C7-sol).
共聚物正庚烷可溶级分和异戊二烯均聚物的1H-NMR波谱采用Bruker Advance 2B 400 MHz核磁共振波谱仪于室温下测定,以氘代氯仿为溶剂. 共聚物正庚烷不溶级分的1H-NMR谱在Varian Mercury Plus 300 NMR核磁共振波谱仪上测定,以氘代邻二氯苯为溶剂,样品温度为130 °C. 样品溶液浓度为10 wt%,样品管直径5 mm,添加5 mg三乙酰丙酮铬以缩短弛豫时间. 脉冲延迟时间3 s,扫描500次.
共聚物级分的分子量和分子量分布采用凝胶渗透色谱法(GPC)测定,仪器为PL 220 GPC仪器(Polymer Laboratories,Church Stretton,UK),使用3 根 PL gel 10 μm MIXED-B,300 mm × 7.5 mm分离柱,柱温150 °C,洗脱液为1,2,4-三氯苯,流速为1.0 mL/min. 采用窄分布聚苯乙烯标样和普适校准法计算分子量.
共聚物级分的热性能采用TA Instruments公司TA-DSC25示差扫描量热仪测定. 样品(3~5 mg)密封在铝制坩埚中. 在氮气气氛下,首先将样品加热到180 °C(对于异戊二烯均聚物,则加热到100 °C)并保持2 min以消除热历史,然后以10 °C/min的速率冷却至0 °C(对于可溶级分为−60 °C)并保持2 min. 最后,将样品以10 °C/min的速率再次加热至180 °C(对于异戊二烯均聚物,再次加热至100 °C),记录升温过程的DSC曲线.
首先使用三乙基铝作为负载型Z-N催化剂的助催化剂,进行了不同异戊二烯(Ip)初始浓度下的乙烯/异戊二烯共聚反应,结果列于
Run | [Ip]0 (mol/L) | Yield(g) | Activity b | Ip c (mol%) | Mwd (kg/mol) | Ðd | Tme (oC) | ∆Hme (J/g) |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0.67 | 1.01 | 0 | 763.0 | 19.8 | 133.3 | 171.8 |
2 | 0.2 | 0.62 | 0.94 | 0.01 | 766.0 | 27.9 | 132.6 | 168.1 |
3 | 0.5 | 0.69 | 0.96 | 0.33 | 605.5 | 25.0 | 132.2 | 166.3 |
4 | 1.0 | 0.74 | 1.24 | 0.50 | 547.7 | 30.5 | 131.4 | 163.1 |
5 | 1.5 | 0.86 | 1.18 | 1.19 | 475.7 | 22.8 | 130.9 | 165.1 |
6 | 2.0 | 0.70 | 0.95 | 1.47 | 352.7 | 24.3 | 130.4 | 167.2 |
7 f | 1.0 | 0.18 | 0.28 | 100 g | 73.5 g | 2.4 g | 45.6 g | 38.2 g |
a Polymerization conditions: p(ethylene)=0.1 MPa; n-heptane as solvent (~50 mL); W(catalyst)=(50±3) mg; TEA as cocatalyst, Al/Ti=100 (molar ratio); T=60 °C; b In (kg polymer/(g Ti·h)); c Calculated from 1H-NMR of the part of copolymer insoluble in boiling n-heptane. d Determined by GPC analysis on boiling n-heptane insoluble part of copolymer; e Melting temperature (Tm) and melting enthalpy (∆Hm) determined by DSC analysis on boiling n-heptane insoluble part of copolymer; f Homopolymerization of isoprene under the same conditions without ethylene; g Whole product.
Fig 1 Change of copolymerization activity with initial isoprene concentration.
为了提高共聚活性及异戊二烯插入率,将助催化剂改为三异丁基铝(TIBA)后,在相同条件下进行共聚反应,结果列于
Run | [Ip]0 (mol/L) | Yield (g) | Activity b | Ip c (mol%) | Mwd (kg/mol) | Ðd | Tme (oC) | ∆Hme (J/g) |
---|---|---|---|---|---|---|---|---|
11 | 0 | 0.60 | 0.91 | 0 | 559.3 | 4.3 | 127.0 | 140.3 |
12 | 0.2 | 0.59 | 0.97 | 0.17 | 531.7 | 7.5 | 123.2 | 136.9 |
13 | 0.5 | 0.84 | 1.15 | 0.18 | 523.1 | 5.0 | 122.2 | 132.7 |
14 | 1.0 | 0.99 | 1.48 | 0.28 | 437.0 | 5.7 | 121.3 | 126.7 |
15 | 1.5 | 1.07 | 1.48 | 0.58 | 390.4 | 5.4 | 120.5 | 123.3 |
16 | 2.0 | 0.89 | 1.29 | 1.16 | 330.4 | 5.6 | 120.0 | 118.2 |
17 f | 1.0 | 0.25 | 0.38 | 100 | 70.5 | 2.3 | 44.7 g | 27.5 g |
a Polymerization conditions: p(ethylene)=0.1 MPa; n-heptane as solvent (~50 mL); W(catalyst)=(50±3) mg; TIBA as cocatalyst, Al/Ti=100 (molar ratio); T=60 °C; b In (kg polymer/(g Ti·h)); c Calculated from 1H-NMR of the part of copolymer insoluble in boiling n-heptane; d Determined by GPC analysis on boiling n-heptane insoluble part of copolymer; e Melting temperature (Tm) and melting enthalpy (∆Hm) determined by DSC analysis on boiling n-heptane insoluble part of copolymer; f Homopolymerization of isoprene under the same conditions without ethylene; g Whole product.
由于负载型Z-N催化剂多活性中心的特点,其乙烯-α-烯烃共聚产物通常有较宽的组成分布. 为了准确表征共聚产物的组成分布及链结构,我们参照表征乙烯-α-烯烃共聚产物的方法[
Run | [Ip]0 (mol/L) | C7-ins | C7-sol | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fr. (wt%) | trans-1,4 (%) | cis-1,4 (%) | 3,4-(%) | Ip (mol%) | Fr. (wt%) | trans-1,4 (%) | cis-1,4 (%) | 3,4-(%) | Ip (mol%) | |||
1 | 0 | 99.52 | − | − | − | − | 0.48 | − | − | − | − | |
2 | 0.2 | 95.88 | 75.5 | 24.5 | 0.0 | 0.01 | 4.12 | 93.5 | 5.5 | 1.0 | 21.1 | |
3 | 0.5 | 91.42 | 85.2 | 13.4 | 1.3 | 0.33 | 8.58 | 96.5 | 3.1 | 0.4 | 50.1 | |
4 | 1.0 | 86.22 | 92.2 | 6.5 | 1.2 | 0.49 | 13.78 | 97.1 | 2.7 | 0.2 | 56.3 | |
5 | 1.5 | 74.27 | 92.8 | 3.2 | 3.9 | 1.24 | 25.73 | 97.0 | 2.5 | 0.4 | 60.9 | |
6 | 2.0 | 61.37 | 92.3 | 3.6 | 4.1 | 1.53 | 38.63 | 97.5 | 2.1 | 0.4 | 70.3 | |
7 a | 1.0 | − b | 94.7 | 3.8 | 1.5 | 100 | − b | − b | − b | − b | − b | |
11 | 0 | 99.68 | − b | − b | − b | − b | 0.32 | − b | − b | − b | − b | |
12 | 0.2 | 94.16 | 78.1 | 21.9 | 0.0 | 0.23 | 5.84 | − c | − c | − c | − c | |
13 | 0.5 | 89.21 | 85.5 | 14.5 | 0.0 | 0.16 | 10.79 | − c | − c | − c | − c | |
14 | 1.0 | 84.50 | 88.0 | 12.0 | 0.0 | 0.31 | 15.50 | − c | − c | − c | − c | |
15 | 1.5 | 65.76 | 93.1 | 6.9 | 0.0 | 0.60 | 34.24 | − c | − c | − c | − c | |
16 | 2.0 | 62.98 | 97.3 | 2.7 | 0.0 | 1.16 | 37.02 | − c | − c | − c | − c | |
17 a | 1.0 | − b | 97.6 | 2.3 | 0.1 | 100 | − b | − b | − b | − b | − b |
a Homopolymerization of isoprene; b Not available; c Not determined.
首先用核磁共振氢谱(1H-NMR)分析了共聚物级分的链结构. 如
Fig 2 1H-NMR spectra of boiling n-heptane insoluble fraction of copolymer synthesized with TEA.
Fig 3 1H-NMR spectra of boiling n-heptane soluble fraction of copolymer synthesized with TEA
由
由
通过GPC分析测定了共聚物级分的分子量和分子量分布.
Fig 4 Molecular weight distributions of polyethylene, ethylene-isoprene copolymer and polyisoprene synthesized with TEA (a) and TIBA (b) as cocatalyst
Fig 5 Changes of molecular weight of copolymer fractions with initial isoprene concentration: (a) TEA as cocatalyst; (b) TIBA as cocatalyst.
对共聚物的两部分级分分别进行了DSC热分析. TIBA为助催化剂合成的共聚物的DSC升温曲线如
Fig 6 DSC traces of boiling n-heptane insoluble (a) and soluble (b) fractions of copolymer synthesized using TIBA as cocatalyst.
助催化剂对不溶级分的Tm和∆Hm有明显的影响. 对比具有相近Ip含量的TEA和TIBA体系产物的C7-ins级分可见,前者C7-ins级分的Tm比后者的高10 °C以上,∆Hm值也比后者的大20%~30%,说明以TEA为助催化剂合成的不溶级分的链内Ip单元分布更加不均匀. 这一现象与TEA体系的不溶级分呈现很宽的分子量分布可能有内在联系,有待作进一步的深入研究.
为了调控乙烯-异戊二烯共聚体系中两类活性中心的比例,我们参考此类催化剂用于合成等规聚丙烯时加入外给电子体来提高立构选择性的做法,分别将2种聚丙烯生产常用的硅氧烷类外给电子体(环己基甲基二甲氧基硅烷(C-donor)和二环戊基二甲氧基硅烷(D-donor))加入共聚体系,考察其对共聚物组成分布和链结构的影响,结果列于
Run | Donor | Si/Ti b (molar ratio) | Yield (g) | Activity c | C7-ins (wt%) | Ip d (mol%) | Mwd (kg/mol) | Ðd | Tmd (°C) | ∆Hmd (J/g) |
---|---|---|---|---|---|---|---|---|---|---|
21 | None | 0 | 0.76 | 1.22 | 78.97 | 0.36 | 866.7 | 8.4 | 128.9 | 121.4 |
22 | C-donor | 3 | 0.46 | 0.73 | 83.62 | 0.56 | 685.8 | 8.4 | 129.3 | 122.3 |
23 | C-donor | 5 | 0.44 | 0.70 | 88.60 | 0.10 | 808.4 | 6.2 | 129.9 | 118.0 |
24 | C-donor | 10 | 0.44 | 0.63 | 97.49 | 0.11 | 734.4 | 5.5 | 130.6 | 119.8 |
25 | C-donor | 15 | 0.39 | 0.58 | 98.74 | 0.07 | 835.7 | 4.6 | 130.5 | 123.0 |
26 | D-donor | 3 | 0.69 | 0.90 | 85.44 | 0.28 | 685.8 | 8.4 | 129.3 | 122.3 |
27 | D-donor | 5 | 0.47 | 0.74 | 90.83 | 0.16 | 808.4 | 6.2 | 129.9 | 118.0 |
28 | D-donor | 10 | 0.34 | 0.50 | 93.10 | 0.10 | 734.4 | 5.5 | 130.6 | 119.8 |
29 | D-donor | 15 | 0.31 | 0.49 | 93.83 | 0.01 | 835.7 | 4.6 | 130.5 | 123.0 |
a Polymerization conditions: TIBA as cocatalyst, Al/Ti=80 (molar ratio); [Ip]0=1 mol/L; The other conditions are the same as
从
对共聚物的C7-ins级分进行链结构表征发现,添加少量C-donor (Si/Ti=3)时其Ip含量略有增大,进一步提高Si/Ti比使Ip含量持续降低. 添加D-donor时,Ip含量随Si/Ti比增大而持续降低,在Si/Ti比为15时仅有0.01 mol%,几乎没有异戊二烯插入到链内.
给电子体的加入对Ip插入共聚物链的区域/立体选择性产生了显著的影响,但2种给电子体的影响规律呈现相反的趋势. 如
Fig 7 Effects of external donor on regio/stereo-selectivity of ethylene-isoprene copolymer (C7-ins fraction).
根据外给电子体提高负载型Z-N催化剂的丙烯聚合反应立体定向性的微观机理,可以对外给电子体降低异戊二烯插入率的原因作出初步的分析. 最新的机理研究成果认为,外给电子体与主-助催化剂反应产物AlR2Cl协同吸附在低定向性活性中心钛原子第二层配位圈的镁原子上,提供丙烯等规聚合所需的定位基团,从而显著提高活性中心的立体定向性[
含邻苯二甲酸酯类内给电子体的负载型Ziegler-Natta催化剂能以中等的活性催化乙烯-异戊二烯共聚反应,得到具有双峰型组成分布的共聚物. 在乙烯压力0.1 MPa、异戊二烯初始浓度小于等于2 mol/L条件下合成的共聚产物包含2种结构差别显著的级分,一种级分的异戊二烯含量低于2 mol%且分子量较高,另一级分的异戊二烯含量大于20 mol%且分子量较低,说明催化体系中存在结合异戊二烯能力差别极大的两类活性中心. 两部分共聚产物中的异戊二烯结构单元均以反式-1,4-结构为主,共聚反应表现出很高的区域/立体选择性. 随着异戊二烯初始浓度逐渐增大,共聚反应活性先持续增大、当[Ip]0>1 mol/L时转为降低,同时高异戊二烯含量级分的比例增大,两部分级分的异戊二烯含量也持续增大. 相较于TIBA为助催化剂的共聚反应,以TEA为助催化剂时聚合活性较低,但产物的异戊二烯含量较高,分子量分布较宽. 在共聚体系中加入硅氧烷外给电子体使得共聚物中高异戊二烯含量的级分显著减少,产物的组成分布变成以低异戊二烯含量共聚物为主的单峰分布.
Wimmer F P, Caporaso L, Cavallo L, Mecking S, Falivene L . Macromolecules , 2018 . 51 4525 - 4531 . DOI:10.1021/acs.macromol.8b00783 . [百度学术]
Fu P F, Yang S T . J Polym Sci, Part A: Polym Chem , 2018 . 56 1308 - 1321 . DOI:10.1002/pola.29012 . [百度学术]
Chen Z, Brookhart M . Acc Chem Res , 2018 . 51 1831 - 1839 . DOI:10.1021/acs.accounts.8b00225 . [百度学术]
Grocha P, Dziubeka K, Czajaa K, Białeka M, Mitułab K, Dudziecb B, Marciniecb B . Eur Polym J , 2018 . 100 187 - 199 . DOI:10.1016/j.eurpolymj.2018.01.039 . [百度学术]
Mitsushige Y, Yasuda H, Carrow B P, Ito S, Kobayashi M, Tayano T, Watanabe Y, Okuno Y, Hayashi S, Kuroda J, Okumura Y, Nozaki K . ACS Macro Lett , 2018 . 7 305 - 311 . DOI:10.1021/acsmacrolett.8b00034 . [百度学术]
Yasuda H, Nakano R, Ito S, Nozaki K . J Am Chem Soc , 2018 . 140 1876 - 1883 . DOI:10.1021/jacs.7b12593 . [百度学术]
Xin B S, Sato N, Tanna A, Oishi Y, Konishi Y, Shimizu F . J Am Chem Soc , 2017 . 139 3611 - 3614 . DOI:10.1021/jacs.6b13051 . [百度学术]
Na Yinna(那银娜). Synthesis of Functionalized Polyolefin through Co(ter)polymerization of Ethylene and Polar Monomers(乙烯与极性单体共聚制备功能化聚烯烃材料). Doctoral Dissertation of University of Science and Technology of China(中国科学技术大学博士学位论文), 2020
[百度学术]Li Hongchu(李红春), Niu Yongsheng(牛永盛) . Polymer Materials Science and Engineering(高分子材料科学与工程) , 2012 . 28 ( 1 ): 13 - 15. [百度学术]
Mu H L, Ye J H, Zhou G L, Li K K, Jian Z B . Chinese J Polym Sci , 2020 . 38 579 - 586 . DOI:10.1007/s10118-020-2359-0 . [百度学术]
Železník O . Merna J, Polymer , 2019 . 175 195 - 205 . DOI:10.1016/j.polymer.2019.05.025 . [百度学术]
Lee D H, Yoon K B, Park J R, Lee B H . Eur Polym J , 1997 . 33 447 - 451 . DOI:10.1016/S0014-3057(96)00184-X . [百度学术]
Li X F, Nishiura M, Hu L H, Mori K, Hou Z M . J Am Chem Soc , 2009 . 131 13870 - 13882 . DOI:10.1021/ja9056213 . [百度学术]
Chenal T, Visseaux M . Macromolecules , 2012 . 45 5718 - 5727 . DOI:10.1021/ma3005185 . [百度学术]
Endo K, Otsu T . Macromol Rapid Commun , 1992 . 13 135 - 139 . DOI:10.1002/marc.1992.030130210 . [百度学术]
Capacchione C, Saviello D, Avagliano A, Proto A . J Polym Sci, Part A: Polym Chem , 2010 . 48 4200 - 4206 . DOI:10.1002/pola.24204 . [百度学术]
Du G, Xue J P, Peng D Q, Yu C, Wang H H, Zhou Y N, Bi J J, Zhang S W, Dong Y P, Li X F . J Polym Sci, Part A: Polym Chem , 2015 . 53 2898 - 2907 . DOI:10.1002/pola.27769 . [百度学术]
Tian Jing(田晶), Wang Yinran(王胤然), Fu Hongran(付洪然), Guo Fang(郭方) . Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 8 ): 826 - 832 . DOI:10.11777/j.issn1000-3304.2019.19020 . [百度学术]
Tan Rui(谭睿). Studies on Propylene/Ethylene/Conjugated Alkenes Polymerization Catalyzed by Half-sandwich Scandium Complexes(单茂钪催化丙烯/乙烯/共轭烯烃聚合的研究). Doctoral Dissertation of Dalian University of Technology(大连理工大学博士学位论文), 2018
[百度学术]
Hu Xiaojie(胡晓洁). Theoretical Studies of Copolymerization of Isoprene with Ethylene and Lactide Polymerization Catalyzed by Rare-Earth Metal Complexes(稀土金属配合物催化异戊二烯-乙烯共聚及丙交酯聚合的理论研究). Doctoral Dissertation of Dalian University of Technology(大连理工大学博士学位论文), 2017
[百度学术]Das C, Elguweri M, Jiang P, Kang S, Kelchtermans M, McLeish T C B, Parkinson M, Read D J, Redlich M P, Shirodkar P P . Macromol React Eng , 2019 . 13 1800071.1 - 1800071.14. [百度学术]
Ying W B, Lee M W, Yang H S, Moon D S, Ko N Y, Lee B, Zhu J, Zhang R Y, Lee K J . Macromol Chem Phys , 2017 . 218 1700298 DOI:10.1002/macp.201700298 . [百度学术]
Song S F, Liu X Y, Zhang H, Fu Z S, Xu J T, Fan Z Q . J Polym Sci, Part A: Polym Chem , 2018 . 56 2715 - 2722 . DOI:10.1002/pola.29255 . [百度学术]
Zhang Z, Qi M Z, Yang P J, Fu Z S, Xu J T, Fan Z Q . J Appl Polym Sci , 2018 . 135 45679 DOI:10.1002/app.45679 . [百度学术]
Khan A, Guo Y T, Zhang Z, Ali A, Fu Z S, Fan Z Q . J Appl Polym Sci , 2018 . 135 46030 DOI:10.1002/app.46030 . [百度学术]
Jiang B Y, Liu X Y, Weng Y H, Fu Z S, He A H, Fan Z Q . J Catal , 2019 . 369 324 - 334 . DOI:10.1016/j.jcat.2018.11.034 . [百度学术]
Niu Q T, Zhang J Y, Peng W, Fan Z Q, He A H . Mol Catal , 2019 . 471 1 - 8 . DOI:10.1016/j.mcat.2019.04.009 . [百度学术]
Chen Y P, Fan Z Q . Eur Polym J , 2006 . 42 2441 - 2449 . DOI:10.1016/j.eurpolymj.2006.05.015 . [百度学术]
Lou Junqin(楼均勤), Liu Xiaoyan(刘小燕), Fu Zhisheng(傅智盛), Wang Qi(王齐), Xu Junting(徐君庭), Fan Zhiqiang(范志强) . Acta Polymerica Sinica(高分子学报) , 2009 . ( 8 ): 748 - 755 . DOI:10.3321/j.issn:1000-3304.2009.08.006 . [百度学术]
Xia S J, Fu Z S, Liu X Y, Fan Z Q . Chinese J Polym Sci , 2013 . 31 110 - 121 . DOI:10.1007/s10118-013-1201-3 . [百度学术]
Xu T, Yang H R, Fu Z S, Fan Z Q . J Organomet Chem , 2015 . 798 328 - 334 . DOI:10.1016/j.jorganchem.2015.04.027 . [百度学术]
Vittoria A, Meppelder A, Friederichs N, Busico V, Cipullo R . ACS Catal , 2017 . 7 4509 - 4518 . DOI:10.1021/acscatal.7b01232 . [百度学术]
Jiang B Y, Zhang B, Guo Y T, Ali A, Guo W Q, Fu Z S, Fan Z Q . ChemCatChem , 2020 . 12 5140 - 5148 . DOI:10.1002/cctc.202000778 . [百度学术]
Shen X R, Fu Z S, Hu J, Wang Q, Fan Z Q . J Phys Chem C , 2013 . 117 15174 - 15182 . DOI:10.1021/jp404416n . [百度学术]
309
浏览量
435
下载量
0
CSCD
相关文章
相关作者
相关机构