浏览全部资源
扫码关注微信
1.中山大学 聚合物复合材料及功能材料教育部重点实验室 高性能树脂基复合材料广东省重点实验室 广东省高性能有机聚合物光电功能薄膜工程技术研究中心 化学学院 广州 510275
2.广东粤财投资控股有限公司 广州 511045
E-mail: ceszy@mail.sysu.edu.cn
xjr@mail.sysu.edu.cn
纸质出版日期:2021-07-20,
网络出版日期:2021-05-21,
收稿日期:2020-12-16,
修回日期:2020-12-25,
扫 描 看 全 文
范振国,刘四委,池振国等.本征型聚酰亚胺介电常数的定量构效关系模型构建与研究[J].高分子学报,2021,52(07):750-761.
Zhen-guo Fan, Si-wei Liu, Zhen-guo Chi, Yi Zhang, Jia-rui Xu. Construction and Study of Quantitative Structure-Property Relationship Model for Intrinsic Polyimide Dielectric Constant[J]. ACTA POLYMERICA SINICA, 2021,52(7):750-761.
范振国,刘四委,池振国等.本征型聚酰亚胺介电常数的定量构效关系模型构建与研究[J].高分子学报,2021,52(07):750-761. DOI: 10.11777/j.issn1000-3304.2020.20278.
Zhen-guo Fan, Si-wei Liu, Zhen-guo Chi, Yi Zhang, Jia-rui Xu. Construction and Study of Quantitative Structure-Property Relationship Model for Intrinsic Polyimide Dielectric Constant[J]. ACTA POLYMERICA SINICA, 2021,52(7):750-761. DOI: 10.11777/j.issn1000-3304.2020.20278.
综合运用量子化学方法及基团贡献法,采集了78种不同化学结构聚酰亚胺的结构参数. 采用通径分析法从16种参数中筛选出了对介电常数具有显著影响的8种结构参数,在此基础上,构建了2种针对聚酰亚胺介电常数的定量构效关系模型,平均相对误差均在10%以内. 研究认为影响聚酰亚胺薄膜介电常数的最重要因素为分子体积,从宏观角度来看即体系的自由体积尺寸. 评价了2种模型的适用性及稳定性,对比发现人工神经网络模型具备更高的精度,相对误差均在5%以内,多元线性回归模型的精度在10%以内,但具备更好的物理意义. 设计了18种低介电常数的聚酰亚胺结构单元,并预测其介电常数. 研究发现增加体系的含氟量可以降低其介电常数,最佳含氟量为0.25~0.37之间. 侧基占比
S/M
最佳比例为0.5~0.6左右,侧基占比过大将会导致介电常数上升. 基于上述研究,设计了3种超低介电常数的聚酰亚胺结构,其中最低预测介电常数为1.22.
The structure parameters of 78 polyimides with different chemical structures were collected by using quantum chemistry method and group contribution method. Eight structural parameters with significant influence on dielectric constant were selected from 16 kinds of parameters by path analysis. On this basis
two kinds of quantitative structure-property relationship models for polyimide were constructed
and the average relative errors were within 10%. It is considered that the most important factor affecting the permittivity of polyimide film is molecular volume
which is the free volume size of the molecular from the macroscopic point of view. The applicability and stability of the two models are evaluated. It is found that artificial neural network has higher accuracy
the relative error is less than 5%
and the accuracy of multiple linear regression model is less than 10%
but it has better physical significance. Eighteen polyimide structural units with low dielectric constant were designed and their dielectric constants were predicted. It is shown that the dielectric constant can be reduced by increasing the fluorine content of the molecular
and the optimum fluorine content is between 0.25 and 0.37. The optimal ratio of side chain to main chain is about 0.5-0.6
which will lead to the increase of dielectric constant. Based on the above research
three polyimide structures with ultra-low dielectric constant were designed
and the lowest predicted dielectric constant was 1.22.
聚酰亚胺介电常数定量构效关系多元线性回归人工神经网络
PolyimideDielectric constantQuantitative structure-property relationshipMultiple linear regressionArtificial neural network
Liu Y, Zhou Z, Qu L, Zou B, Chen Z, Zhang Y, Liu S, Chi Z, Chen X, Xu J. Mater Chem Front, 2017, 1(2): 326-337. doi:10.1039/c6qm00027dhttp://dx.doi.org/10.1039/c6qm00027d
Bei R, Qian C, Zhang Y, Chi Z, Liu S, Chen X, Xu J, Aldred M P. J Mater Chem C, 2017, 5(48): 12807-12815. doi:10.1039/c7tc04220ehttp://dx.doi.org/10.1039/c7tc04220e
Qian C, Fan Z, Zheng W, Bei R, Zhu T, Liu S, Chi Z, Aldred M, Chen X, Zhang Y, Xu J. Chinese J Polym Sci, 2020,38(3): 213-219. doi:10.1007/s10118-020-2339-4http://dx.doi.org/10.1007/s10118-020-2339-4
Chen W, Zhou Z, Yang T, Bei R, Zhang Y, Liu S, Chi Z, Chen X, Xu J. React Funct Polym, 2016, 108: 71-77. doi:10.1016/j.reactfunctpolym.2016.04.011http://dx.doi.org/10.1016/j.reactfunctpolym.2016.04.011
Liu Y, Qian C, Qu L, Wu Y, Zhang Y, Wu X, Zou B, Chen W, Chen Z, Chi Z, Liu S, Chen X, Xu J. Chem Mater, 2015, 27(19): 6543-6549. doi:10.1021/acs.chemmater.5b01798http://dx.doi.org/10.1021/acs.chemmater.5b01798
Zhang Libin(张立彬), Wang Jinqing(王金清), Yang Shengrong(杨生荣), Kong Xiangzheng(孔祥正). Acta Polymerica Sinica(高分子学报), 2014(11): 1472-1478. doi:10.11777/j.issn1000-3304.2014.14069http://dx.doi.org/10.11777/j.issn1000-3304.2014.14069
Wei S, Yu Q, Fan Z, Liu S, Chi Z, Chen X, Zhang Y, Xu J. RSC Adv, 2018, 8(39): 22169-22176. doi:10.1039/c8ra00827bhttp://dx.doi.org/10.1039/c8ra00827b
Liu Yi(刘仪), Xu Xiaozhou(许晓洲), Mo Song(莫松), Han Gang(韩刚), Zhu Caizhen(朱才镇), Li Cuihua(李翠华), Fan Lin(范琳). Acta Polymerica Sinica(高分子学报), 2020, 51(10): 1169-1177. doi:10.11777/j.issn1000-3304.2020.20093http://dx.doi.org/10.11777/j.issn1000-3304.2020.20093
Fan Zhenguo(范振国), Chen Wenxin(陈文欣), Wei Shiyang(魏世洋), Liu Teng(刘腾), Liu Siwei(刘四委), Chi Zhenguo(池振国), Zhang Yi(张艺), Xu Jiarui(许家瑞). Acta Polymerica Sinica(高分子学报), 2019, 50(2): 179-188. doi:10.11777/j.issn1000-3304.2018.18183http://dx.doi.org/10.11777/j.issn1000-3304.2018.18183
Shahlaei M. Chem Rev, 2013,113(10): 8093-8103. doi:10.1021/cr3004339http://dx.doi.org/10.1021/cr3004339
Muehlbacher M, EI KA, Kramer C, Hudson B, Clark T, J Chem Inf Model, 2011, 51(9): 2408-2416. doi:10.1021/ci200276vhttp://dx.doi.org/10.1021/ci200276v
Xu J, Wang L, Liang G, Wang L, Shen X. Polym Eng Sci, 2011, 51(12): 2408-2416. doi:10.1002/pen.22016http://dx.doi.org/10.1002/pen.22016
Cisneros G A, Wikfeldt K T, Ojamäe L, Lu J B, Xu Y, Torabifard H, Bartók A P, Csányi G, Molinero V, Paesani F. Chem Rev, 2016, 116(13): 7501-7528. doi:10.1021/acs.chemrev.5b00644http://dx.doi.org/10.1021/acs.chemrev.5b00644
Ma Jitao(马继涛), Shi Jingjie(时静洁), Chen Haiqun(陈海群). Computers and Applied Chemistry(计算机与应用化学), 2017, 34(5): 369-375. doi:10.16866/j.com.app.chem201705006http://dx.doi.org/10.16866/j.com.app.chem201705006
Nieto-Draghi C, Fayet G, Creton B, Rozanska X, Rotureau P, de Hemptinne J C, Ungerer P, Rousseau B, Adamo C. Chem Rev, 2015, 115(24): 13093-13164. doi:10.1021/acs.chemrev.5b00215http://dx.doi.org/10.1021/acs.chemrev.5b00215
Zhou X, Li W, Shao B, Tian W. J Phys Chem C, 2013, 117(44): 23172-23177. doi:10.1021/jp4085074http://dx.doi.org/10.1021/jp4085074
Zhang Xiujuan(张秀娟), Pang Xianyong(庞先勇). Journal of Shanxi Datong University(山西大同大学学报(自然科学版)), 2013, (2): 43-45. doi:10.3969/j.issn.1674-0874.2013.02.014http://dx.doi.org/10.3969/j.issn.1674-0874.2013.02.014
Fedors R F. Polym Eng Sci, 1974, 14(2): 147-154. doi:10.1002/pen.760140211http://dx.doi.org/10.1002/pen.760140211
You Shibing(游士兵), Yan Yan(严研). Statistics and Decision(统计与决策), 2017, (14): 31-35. doi:10.13546/j.cnki.tjyjc.2017.14.007http://dx.doi.org/10.13546/j.cnki.tjyjc.2017.14.007
Zha J, Jia H, Wang H, Dang Z. J Phys Chem C, 2012, 116: 23676-23681. doi:10.1021/jp305286rhttp://dx.doi.org/10.1021/jp305286r
Park S J, Cho K S, Kim S H. J Colloid Interface Sci, 2004, 272: 384-390. doi:10.1016/j.jcis.2003.12.027http://dx.doi.org/10.1016/j.jcis.2003.12.027
Yu X, Wang X, Gao J, Li X, Wang H. Polymer, 2005, 46(22): 9443-9451. doi:10.1016/j.polymer.2005.07.039http://dx.doi.org/10.1016/j.polymer.2005.07.039
Qian Chao(钱超). Synthesis and Properties of Low-k Polyimides Based on β-relaxation Behaviors(基于β松弛行为的低-k聚酰亚胺的设计合成与性能研究). Doctoral Dissertation of Sun Yat-sen University(中山大学博士学位论文), 2016
Sun Huawei(孙华伟). Synthesis and Optical Properties Studies on Novel Diamines and Their Polyimide Films(新型二胺单体及其聚酰亚胺的设计合成与光学特性研究). Doctoral Dissertation of Sun Yat-sen University(中山大学博士学位论文), 2014
Liu Yiwu(刘亦武). Preparation and Properties of Polyimide Derived from Novel Diamine Monomers Containing Rigid Non-planar Conjugated Structure(含刚性非平面共轭结构新型二胺单体的设计合成及其聚酰亚胺的制备和性能研究). Doctoral Dissertation of Sun Yat-sen University(中山大学博士学位论文), 2014
Yang C, Chen R, Chen K. J Polym Sci, Part A: Polym Chem, 2003, 41(7): 922-938. doi:10.1002/pola.10629http://dx.doi.org/10.1002/pola.10629
Maier G. Prog Polym Sci, 2001, 26(1): 3-65. doi:10.1016/s0079-6700(00)00043-5http://dx.doi.org/10.1016/s0079-6700(00)00043-5
0
浏览量
128
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构