浏览全部资源
扫码关注微信
上海市先进聚合物材料重点实验室 华东理工大学材料科学与工程学院 上海 200237
E-mail: taoxinfeng@ecust.edu.cn
slin@ecust.edu.cn
纸质出版日期:2021-07-20,
网络出版日期:2021-05-18,
收稿日期:2020-12-26,
修回日期:2021-01-10,
扫 描 看 全 文
胡祖佳,颜舒婷,戚家乐等.基于NNTA可控聚合的环形聚类肽合成与表征[J].高分子学报,2021,52(07):708-716.
Zu-jia Hu, Shu-ting Yan, Jia-le Qi, Xin-feng Tao, Shao-liang Lin. Synthesis and Characterization of Cyclic Polypeptoids Based on Controlled Polymerizations of NNTA[J]. ACTA POLYMERICA SINICA, 2021,52(7):708-716.
胡祖佳,颜舒婷,戚家乐等.基于NNTA可控聚合的环形聚类肽合成与表征[J].高分子学报,2021,52(07):708-716. DOI: 10.11777/j.issn1000-3304.2020.20284.
Zu-jia Hu, Shu-ting Yan, Jia-le Qi, Xin-feng Tao, Shao-liang Lin. Synthesis and Characterization of Cyclic Polypeptoids Based on Controlled Polymerizations of NNTA[J]. ACTA POLYMERICA SINICA, 2021,52(7):708-716. DOI: 10.11777/j.issn1000-3304.2020.20284.
研究了1
8-二氮杂二环十一碳-7-烯(DBU)引发的
N
-取代甘氨酸-
N
-硫代羧酸酐(NNTA)开环聚合. 聚合通过两性离子开环聚合机理进行,表现出良好的可控性,聚合产率高(
>
86%),分子量可控(900~7500 g/mol),分子量分布较窄(1.13~1.25). 通过
1
H-NMR、
13
C-NMR谱图、MALDI-ToF质谱和红外光谱等表征手段,证明所得聚合产物具有环形结构,且聚合物链上带有DBU残基和硫代氨基甲酸酯基团. 与苄胺(BA)引发所得的线形聚类肽相比,DBU引发所得的聚类肽具有更小的流体力学体积,进一步证明了其环形结构. 扩链反应表明,加入新单体后聚合反应仍可以继续进行,产物分子量显著增加,表明了DBU引发的NNTA聚合具有活性特征. DBU引发的NNTA两性离子开环聚合是一种简便、高效的环形聚类肽合成方法.
The ring-opening polymerizations of
N
-substituted glycine
N
-thiocarboxyanhydrides (NNTAs) initiated by 1
8-diazabicycloundec-7-ene (DBU) were investigated. Homo- and co-polymerizations of
N
-ethylglycine
N
-thiocarboxyanhydride (NEG-NTA) and
N
-butylglycine
N
-thiocarboxyanhydride (NBG-NTA) initiated by DBU were carried out in THF at 60 ℃
which produced corresponding poly(
N
-ethylglycine) (PNEG)
poly(
N
-butylglycine) (PNBG) and poly(
N
-ethylglycine-
co
-
N
-butylglycine) (P(NEG-
co
-NBG)) with high yield (
>
86%) and narrow dispersities (1.13-1.25). By adjusting monomer to initiator feed molar ratios ranging from 10 to 100
the molecular weights of PNEGs could be tuned from 900 g/mol to 7500 g/mol
which showed the good controllability of the polymerizations.
1
H-NMR and MALDI-ToF mass analyses revealed the structures of cyclic polypeptoids bearing one DBU moiety and one thiocarbamate group. The DBU moiety would be eliminated by potassium trifluoroacetate during the MALDI-ToF analysis and DBU-free cyclic polypeptoids were formed. The existence of thiocarbamate group was further proven by
13
C-NMR and FTIR analyses. To further confirm the cyclic structures of the products obtained by using DBU initiator
linear polypeptoids were synthesized as comparisons by benzylamine (BA)-initiated NNTA polymerizations. With the same degree of polymerizations (DPs)
polypeptoids obtained by DBU initiator had lower hydrodynamic volumes
which indicated their cyclic structures. The living characteristics of DBU-initiated NNTA polymerizations were finally supported by the chain extension reaction. The polymer chain could continue propagating after the addition of another batch of monomers
and the molecular weight of the product increased significantly while the dispersity kept narrow (
Đ
=1.23). DBU-initiated NNTA polymerizations went through zwitterionic ring-opening polymerization mechanism. Attack of DBU on NNTA would generate a zwitterionic propagating intermediate
in which DBU cation and thiocarbamate anion interacted strongly with each another by electrostatic interaction. The chain propagation caused by NNTA monomer addition at the thiocarbamate end of zwitterionic propagating intermediate. And then
end-to-end macrocyclization between DBU cation and thiocarbamate anion formed cyclic polypeptoids. Since NNTAs are more stable monomers compared to NNCAs
and DBU is an accessible initiator
DBU-initiated NNTA zwitterionic ring-opening polymerization is a simple and facile method for the synthesis of cyclic polypeptoids.
聚类肽两性离子开环聚合环形聚合物N-硫代羧酸酐有机碱
PolypeptoidsZwitterionic ring-opening polymerizationCyclic polymersN-ThiocarboxyanhydridesOrganic bases
Zhang D H, Lahasky S H, Guo L, Lee C U, Lavan M. Macromolecules, 2012, 45(15): 5833-5841. doi:10.1021/ma202319ghttp://dx.doi.org/10.1021/ma202319g
Luxenhofer R, Fetsch C, Grossmann A. J Polym Sci, Part A: Polym Chem, 2013, 51(13): 2731-2752. doi:10.1002/pola.26687http://dx.doi.org/10.1002/pola.26687
Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R. Chem Rev, 2016, 116(4): 1753-1802. doi:10.1021/acs.chemrev.5b00201http://dx.doi.org/10.1021/acs.chemrev.5b00201
Chan B A, Xuan S, Li A, Simpson J M, Sternhagen G L, Yu T, Darvish O A, Jiang N, Zhang D. Biopolymers, 2018, 109(1): e23070. doi:10.1002/bip.23070http://dx.doi.org/10.1002/bip.23070
Sun Jing(孙静), Li Zhibo(李志波). Acta Polymerica Sinica(高分子学报), 2018, (1): 1-8. doi:10.11777/j.issn1000-3304.2018.17220http://dx.doi.org/10.11777/j.issn1000-3304.2018.17220
Chen Jingxiao(陈荆晓), Wang Huiyuan(王慧媛), Xu Xiaoding(许小丁), Chen Weihai(陈巍海), Zhang Xianzheng(张先正). Acta Polymerica Sinica(高分子学报), 2011, (8): 799-811. doi:10.3724/sp.j.1105.2011.11100http://dx.doi.org/10.3724/sp.j.1105.2011.11100
Wang Mingzhi(王明智), Du Jianzhong(杜建忠). Acta Polymerica Sinica(高分子学报), 2014, (9): 1183-1194. doi:10.11777/j.issn1000-3304.2014.14125http://dx.doi.org/10.11777/j.issn1000-3304.2014.14125
Tao Youhua(陶友华). Acta Polymerica Sinica(高分子学报), 2016, (9): 1151-1159. doi:10.11777/j.issn1000-3304.2016.16130http://dx.doi.org/10.11777/j.issn1000-3304.2016.16130
Song Z, Han Z, Lv S, Chen C, Chen L, Yin L, Cheng J. Chem Soc Rev, 2017, 46(21): 6570-6599. doi:10.1039/c7cs00460ehttp://dx.doi.org/10.1039/c7cs00460e
Song Z, Tan Z, Cheng J. Macromolecules, 2019, 52(22): 8521-8539. doi:10.1021/acs.macromol.9b01450http://dx.doi.org/10.1021/acs.macromol.9b01450
Fetsch C, Grossmann A, Holz L, Nawroth J F, Luxenhofer R. Macromolecules, 2011, 44(17): 6746-6758. doi:10.1021/ma201015yhttp://dx.doi.org/10.1021/ma201015y
Fetsch C, Luxenhofer R. Polymers, 2013, 5(1): 112-127. doi:10.3390/polym5010112http://dx.doi.org/10.3390/polym5010112
Ulbricht J, Jordan R, Luxenhofer R. Biomaterials, 2014, 35(17): 4848-4861. doi:10.1016/j.biomaterials.2014.02.029http://dx.doi.org/10.1016/j.biomaterials.2014.02.029
Schneider M, Fetsch C, Amin I, Jordan R, Luxenhofer R. Langmuir, 2013, 29(23): 6983-6988. doi:10.1021/la4009174http://dx.doi.org/10.1021/la4009174
Heller P, Birke A, Huesmann D, Weber B, Fischer K, Reske-Kunz A, Bros M, Barz M. Macromol Biosci, 2014, 14(10): 1380-1395. doi:10.1002/mabi.201470035http://dx.doi.org/10.1002/mabi.201470035
Deng Y W, Zou T, Tao X F, Semetey V, Trepout S, Marco S, Ling J, Li M H. Biomacromolecules, 2015, 16(10): 3265-3274. doi:10.1021/acs.biomac.5b00930http://dx.doi.org/10.1021/acs.biomac.5b00930
Li A, Zhang D H. Biomacromolecules, 2016, 17(3): 852-861. doi:10.1021/acs.biomac.5b01561http://dx.doi.org/10.1021/acs.biomac.5b01561
Schneider M, Tang Z, Richter M, Marschelke C, Förster P, Wegener E, Amin I, Zimmermann H, Scharnweber D,Braun H G, Luxenhofer R, Jordan R. Macromol Biosci, 2016, 16(1): 75-81. doi:10.1002/mabi.201670004http://dx.doi.org/10.1002/mabi.201670004
Deng Y, Chen H, Tao X, Cao F, Trépout S, Ling J, Li M H. Biomacromolecules, 2019, 20(9): 3435-3444. doi:10.1021/acs.biomac.9b00713http://dx.doi.org/10.1021/acs.biomac.9b00713
Deng Y, Chen H, Tao X, Trépout S, Ling J, Li M H. Chin Chem Lett, 2020, 31(7): 1931-1935. doi:10.1016/j.cclet.2019.12.026http://dx.doi.org/10.1016/j.cclet.2019.12.026
Tao X, Chen H, Trépout S, Cen J, Ling J, Li M H. Chem Commun, 2019, 55(90): 13530-13533. doi:10.1039/c9cc07501ahttp://dx.doi.org/10.1039/c9cc07501a
Barz M, Luxenhofer R, Zentel R, Vicent M J. Polym Chem, 2011, 2(9): 1900-1918. doi:10.1039/c0py00406ehttp://dx.doi.org/10.1039/c0py00406e
Huesmann D, Sevenich A, Weber B, Barz M. Polymer, 2015, 67: 240-248. doi:10.1016/j.polymer.2015.04.070http://dx.doi.org/10.1016/j.polymer.2015.04.070
Birke A, Ling J, Barz M. Prog Polym Sci, 2018, 81: 163-208. doi:10.1016/j.progpolymsci.2018.01.002http://dx.doi.org/10.1016/j.progpolymsci.2018.01.002
Robinson J W, Secker C, Weidner S, Schlaad H. Macromolecules, 2013, 46(3): 580-587. doi:10.1021/ma302412vhttp://dx.doi.org/10.1021/ma302412v
Wei Y, Tian J, Zhang Z, Zhu C, Sun J, Li Z. Macromolecules, 2019, 52(4): 1546-1556. doi:10.1021/acs.macromol.8b02230http://dx.doi.org/10.1021/acs.macromol.8b02230
Sun J, Wang Z, Zhu C, Wang M, Shi Z, Wei Y, Fu X, Chen X, Zuckermann R N. Proc Natl Acad Sci, 2020, 117(50): 31639-31647. doi:10.1073/pnas.2011816117http://dx.doi.org/10.1073/pnas.2011816117
Wang Z, Lin M, Bonduelle C, Li R, Shi Z, Zhu C, Lecommandoux S, Li Z, Sun J. Biomacromolecules, 2020, 21(8): 3411-3419. doi:10.1021/acs.biomac.0c00844http://dx.doi.org/10.1021/acs.biomac.0c00844
Tao X, Li M H, Ling J. Eur Polym J, 2018, 109: 26-42. doi:10.1016/j.eurpolymj.2018.08.039http://dx.doi.org/10.1016/j.eurpolymj.2018.08.039
Tao X, Zheng B, Bai T, Zhu B, Ling J. Macromolecules, 2017, 50(8): 3066-3077. doi:10.1021/acs.macromol.7b00309http://dx.doi.org/10.1021/acs.macromol.7b00309
Tao X, Zheng B, Bai T, Li M H, Ling J. Macromolecules, 2018, 51(12): 4494-4501. doi:10.1021/acs.macromol.8b00259http://dx.doi.org/10.1021/acs.macromol.8b00259
Zheng B, Bai T, Tao X, Schlaad H, Ling J. Biomacromolecules, 2018, 19(11): 4263-4269. doi:10.1021/acs.biomac.8b01119http://dx.doi.org/10.1021/acs.biomac.8b01119
Zheng Botuo(郑博拓), Tao Xinfeng(陶鑫峰), Ling Jun(凌君). Acta Polymerica Sinica(高分子学报), 2018, (1): 72-79. doi:10.11777/j.issn1000-3304.2018.17172http://dx.doi.org/10.11777/j.issn1000-3304.2018.17172
Laurent B A, Grayson S M. Chem Soc Rev, 2009, 38(8): 2202-2213. doi:10.1039/b809916mhttp://dx.doi.org/10.1039/b809916m
Haque F M, Grayson S M. Nat Chem, 2020, 12(5): 433-444. doi:10.1038/s41557-020-0440-5http://dx.doi.org/10.1038/s41557-020-0440-5
Kricheldorf H R, von Lossow C, Schwarz G. Macromolecules, 2005, 38(13): 5513-5518. doi:10.1021/ma0401368http://dx.doi.org/10.1021/ma0401368
Kricheldorf H R, von Lossow C, Schwarz G. J Polym Sci, Part A: Polym Chem, 2005, 43(22): 5690-5698. doi:10.1002/pola.21021http://dx.doi.org/10.1002/pola.21021
Kricheldorf H R, von Lossow C, Schwarz G. J Polym Sci, Part A: Polym Chem, 2006, 44(15): 4680-4695. doi:10.1002/pola.21553http://dx.doi.org/10.1002/pola.21553
Kricheldorf H R, von Lossow C, Lomadze N, Schwarz G. J Polym Sci, Part A: Polym Chem, 2008, 46(12): 4012-4020. doi:10.1002/pola.22742http://dx.doi.org/10.1002/pola.22742
Brown H A, Waymouth R M. Acc Chem Res, 2013, 46(11): 2585-2596. doi:10.1021/ar400072zhttp://dx.doi.org/10.1021/ar400072z
Guo L, Zhang D H. J Am Chem Soc, 2009, 131(50): 18072-18074. doi:10.1021/ja907380dhttp://dx.doi.org/10.1021/ja907380d
Guo L, Lahasky S H, Ghale K, Zhang D H. J Am Chem Soc, 2012, 134(22): 9163-9171. doi:10.1021/ja210842bhttp://dx.doi.org/10.1021/ja210842b
Li A, Lu L, Li X, He L L, Do C W, Garno J C, Zhang D H. Macromolecules, 2016, 49(4): 1163-1171. doi:10.1021/acs.macromol.5b02611http://dx.doi.org/10.1021/acs.macromol.5b02611
Kricheldorf H R, Bösinger K. Makromol Chem, 1976, 177(5): 1243-1258. doi:10.1002/macp.1976.021770502http://dx.doi.org/10.1002/macp.1976.021770502
Tao X, Deng C, Ling J. Macromol Rapid Commun, 2014, 35(9): 875-881. doi:10.1002/marc.201400066http://dx.doi.org/10.1002/marc.201400066
Tao X F, Deng Y W, Shen Z Q, Ling J. Macromolecules, 2014, 47(18): 6173-6180. doi:10.1021/ma501131thttp://dx.doi.org/10.1021/ma501131t
Tao X, Zheng B, Kricheldorf H R, Ling J. J Polym Sci, Part A: Polym Chem, 2017, 55(3): 404-410. doi:10.1002/pola.28402http://dx.doi.org/10.1002/pola.28402
Li X P, Guo L, Casiano-Maldonado M, Zhang D H, Wesdemiotis C. Macromolecules, 2011, 44(12): 4555-4564. doi:10.1021/ma200542phttp://dx.doi.org/10.1021/ma200542p
Liang Q, Walsh P J, Jia T. ACS Catal, 2020, 10(4): 2633-2639. doi:10.1021/acscatal.9b04887http://dx.doi.org/10.1021/acscatal.9b04887
Dewey R S, Schoenewaldt E F, Joshua H, Paleveda W J, Schwam H, Barkemeyer H, Arison B H, Veber D F, Denkewalter R G, Hirschmann R. J Am Chem Soc, 1968, 90(12): 3254-3255. doi:10.1021/ja01014a059http://dx.doi.org/10.1021/ja01014a059
0
浏览量
104
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构