浏览全部资源
扫码关注微信
中山大学化学学院 聚合物复合材料及功能材料教育部重点实验室 广州 510275
[ "吴丁财,男,1979年生. 中山大学教授、博士生导师. 2001年在华侨大学获学士学位,专业为应用化学. 2006年在中山大学获博士学位,专业为高分子化学与物理;毕业后留校任教,历任讲师、副教授、教授. 主要从事新型功能高分子材料(特别是多孔高分子及其多孔炭材料)的结构设计、可控制备及其在能源、环境和生物医学等领域的应用研究. 目前担任中山大学聚合物复合材料及功能材料教育部重点实验室副主任,《Chinese Journal of Polymer Science》和《Energy Storage Materials》编委. 2019年获国家杰出青年科学基金资助." ]
纸质出版日期:2021-07-20,
网络出版日期:2021-04-29,
收稿日期:2020-12-28,
扫 描 看 全 文
刘绍鸿,黄俊龙,唐友臣等.新型高分子基多孔炭材料的设计制备与功能化策略[J].高分子学报,2021,52(07):679-686.
Shao-hong Liu, Jun-long Huang, You-chen Tang, Ding-cai Wu. Controllable Preparation and Functionalization Strategies of Novel Polymer-based Porous Carbon Materials[J]. ACTA POLYMERICA SINICA, 2021,52(7):679-686.
刘绍鸿,黄俊龙,唐友臣等.新型高分子基多孔炭材料的设计制备与功能化策略[J].高分子学报,2021,52(07):679-686. DOI: 10.11777/j.issn1000-3304.2020.20286.
Shao-hong Liu, Jun-long Huang, You-chen Tang, Ding-cai Wu. Controllable Preparation and Functionalization Strategies of Novel Polymer-based Porous Carbon Materials[J]. ACTA POLYMERICA SINICA, 2021,52(7):679-686. DOI: 10.11777/j.issn1000-3304.2020.20286.
多孔炭材料具有孔隙率丰富、导电率高、结构稳定以及物理化学性质可调等优点,广泛应用于能源储存与转换、吸附分离、催化、石油化工和生物医药等领域. 原料结构是影响多孔炭材料结构和性能的关键因素. 高分子理化结构丰富可调,且具有良好的成炭性和形貌继承性,是制备高性能多孔炭材料的理想原料. 本专论结合近期国内外研究进展以及我们课题组相关工作,系统总结了高分子衍生多孔炭材料的直接炭化法和模板法设计制备理论,讨论了炭骨架功能化策略,归纳了高分子的化学结构及微观形貌对多孔炭材料的孔道与骨架结构的影响规律,并展望了这一领域未来的研究方向.
Porous carbon materials exhibit high porosity
good electronical conductivity
excellent structural stability and tunable physicochemical properties
and thus find use in a series of areas
including energy storage and conversion
adsorption and separation
catalysis
petrochemical industry
and biological medicine. The physicochemical structures of their precursors are critical to the pores and skeletons of porous carbon materials
thus significantly affecting their properties in various applications. Polymers with controllable physicochemical structures
good carbonizability and desirable morphology inheritability have been regarded as promising precursors for preparation of high-performance porous carbon materials. Recent years have witnessed continuous research breakthroughs in the customization of a series of novel porous carbon materials with various structures and functionalities
based on the precise design of polymer structures
innovation of synthesis methods
and optimization of carbonization technology. Herein
according to the recent research progresses in our group and others groups in domestic and foreign countries
this feature article summarizes the theories of direct-carbonization and templating methods for polymer-derived porous carbon materials
discusses the functionalization strategies of their carbon skeletons
and illuminates the effects of chemical structure and microcosmic morphology of polymers on pores and skeletons of porous carbon materials. Finally
an outlook is prospected with regard to the concerns and challenges for the future study on polymer-based porous carbon materials.
高分子多孔炭材料结构设计可控制备功能化
PolymersPorous carbon materialsStructural designControllable preparationFunctionalization
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chem Rev, 2020, 120(5): 2693-2758. doi:10.1021/acs.chemrev.9b00835http://dx.doi.org/10.1021/acs.chemrev.9b00835
Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Adv Mater, 2013, 25(15): 2219-2223. doi:10.1002/adma.201204530http://dx.doi.org/10.1002/adma.201204530
Jia Z, Li Y, Zuo Z, Liu H, Huang C, Li Y. Acc Chem Res, 2017, 50(10): 2470-2478. doi:10.1021/acs.accounts.7b00205http://dx.doi.org/10.1021/acs.accounts.7b00205
Xu F, Zhai Y, Zhang E, Liu Q, Jiang G, Xu X, Qiu Y, Liu X, Wang H, Kaskel S. Angew Chem Int Ed, 2020, 59(44): 19460-19467. doi:10.1002/anie.202005118http://dx.doi.org/10.1002/anie.202005118
Zhan H J, Wu K J, Hu Y L, Liu J W, Li H, Guo X, Xu J, Yang Y, Yu Z L, Gao H L, Luo X S, Chen J F, Ni Y, Yu S H. Chem, 2019, 5(7): 1871-1882. doi:10.1016/j.chempr.2019.04.025http://dx.doi.org/10.1016/j.chempr.2019.04.025
Wang C, Kim J, Tang J, Na J, Kang Y-M, Kim M, Lim H, Bando Y, Li J, Yamauchi Y. Angew Chem Int Ed, 2020, 59(5): 2066-2070. doi:10.1002/anie.201913719http://dx.doi.org/10.1002/anie.201913719
Daiyan R, Tan X, Chen R, Saputera W H, Tahini H A, Lovell E, Ng Y H, Smith S C, Dai L, Lu X, Amal R. ACS Energy Lett, 2018, 3(9): 2292-2298. doi:10.1021/acsenergylett.8b01409http://dx.doi.org/10.1021/acsenergylett.8b01409
Bonvin F, Jost L, Randin L, Bonvin E, Kohn T. Water Res, 2016, 90: 90-99. doi:10.1016/j.watres.2015.12.001http://dx.doi.org/10.1016/j.watres.2015.12.001
Wu Z Y, Xu S L, Yan Q Q, Chen Z Q, Ding Y W, Li C, Liang H W, Yu S H. Sci Adv, 2018, 4(7): eaato788. doi:10.1126/sciadv.aat0788http://dx.doi.org/10.1126/sciadv.aat0788
Liang Y, Li Z, Yang X, Fu R, Wu D. Chem Commun, 2013, 49(85): 9998-10000. doi:10.1039/c3cc45055dhttp://dx.doi.org/10.1039/c3cc45055d
Liang Y, Chen L, Cai L, Liu H, Fu R, Zhang M, Wu D. Chem Commun, 2016, 52(4): 803-806. doi:10.1039/c5cc07428bhttp://dx.doi.org/10.1039/c5cc07428b
Yu Z, Liu M, Guo D, Wang J, Chen X, Li J, Jin H, Yang Z, Chen X A, Wang S. Angew Chem Int Ed, 2020, 59(16): 6406-6411. doi:10.1002/anie.201914972http://dx.doi.org/10.1002/anie.201914972
Wang T, Sun Y, Zhang L, Li K, Yi Y, Song S, Li M, Qiao Z A, Dai S. Adv Mater, 2019, 31(16): 1807876. doi:10.1002/adma.201807876http://dx.doi.org/10.1002/adma.201807876
Liu S, Wang Z, Zhou S, Yu F, Yu M, Chiang C Y, Zhou W, Zhao J, Qiu J. Adv Mater, 2017, 29(31): 1700874. doi:10.1002/adma.201700874http://dx.doi.org/10.1002/adma.201700874
Chen C, Sun X, Yan X, Wu Y, Liu H, Zhu Q, Bediako B B A, Han B. Angew Chem Int Ed, 2020, 59(27): 11123-11129. doi:10.1002/anie.202004226http://dx.doi.org/10.1002/anie.202004226
Yang Q, Jia Y, Wei F, Zhuang L, Yang D, Liu J, Wang X, Lin S, Yuan P, Yao X. Angew Chem Int Ed, 2020, 59(15): 6122-6127. doi:10.1002/anie.202000324http://dx.doi.org/10.1002/anie.202000324
Hou C C, Zou L, Sun L, Zhang K, Liu Z, Li Y, Li C, Zou R, Yu J, Xu Q. Angew Chem Int Ed, 2020, 59(19): 7384-7389. doi:10.1002/anie.202002665http://dx.doi.org/10.1002/anie.202002665
Guan L, Hu H, Li L, Pan Y, Zhu Y, Li Q, Guo H, Wang K, Huang Y, Zhang M, Yan Y, Li Z, Teng X, Yang J, Xiao J, Zhang Y, Wang X, Wu M. ACS Nano, 2020, 14(5): 6222-6231. doi:10.1021/acsnano.0c02294http://dx.doi.org/10.1021/acsnano.0c02294
Wang Y, Xiao N, Wang Z, Li H, Yu M, Tang Y, Hao M, Liu C, Zhou Y, Qiu J. Chem Eng J, 2018, 342: 52-60. doi:10.1016/j.cej.2018.01.098http://dx.doi.org/10.1016/j.cej.2018.01.098
Lin X, Liang Y, Lu Z, Lou H, Zhang X, Liu S, Zheng B, Liu R, Fu R, Wu D. ACS Sustain Chem Eng, 2017, 5(10): 8535-8540. doi:10.1021/acssuschemeng.7b02462http://dx.doi.org/10.1021/acssuschemeng.7b02462
Dong Y, Yu M, Wang Z, Liu Y, Wang X, Zhao Z, Qiu J. Adv Funct Mater, 2016, 26(42): 7590-7598. doi:10.1002/adfm.201603659http://dx.doi.org/10.1002/adfm.201603659
Di T, Xia Y, Pei B, Zhu T, Zhao T, Li T, Li L. Langmuir, 2020, 36(37): 11117-11124. doi:10.1021/acs.langmuir.0c02115http://dx.doi.org/10.1021/acs.langmuir.0c02115
Wu J, Xu F, Li S, Ma P, Zhang X, Liu Q, Fu R, Wu D. Adv Mater, 2019, 31(4): 1802922. doi:10.1002/adma.201802922http://dx.doi.org/10.1002/adma.201802922
Xu Q, Tang Y P, Zhang X B, Oshima Y, Chen Q H, Jiang D L. Adv Mater, 2018, 30(15): 1706330. doi:10.1002/adma.201706330http://dx.doi.org/10.1002/adma.201706330
Wang H, Min S, Ma C, Liu Z, Zhang W, Wang Q, Li D, Li Y, Turner S, Han Y, Zhu H, Abou-hamad E, Hedhili M N,. doi:10.11919/j.issn.1002-0829.217011http://dx.doi.org/10.11919/j.issn.1002-0829.217011
Pan J, Yu W, Huang K W, Li L J, Yuan J, Antonietti M, Wu T. Nat Commun, 2017, 8: 13592. doi:10.11919/j.issn.1002-0829.217011http://dx.doi.org/10.11919/j.issn.1002-0829.217011
Lee J S M, Briggs M E, Hasell T, Cooper A I. Adv Mater, 2016, 28(44): 9804-9810. doi:10.1002/adma.201603051http://dx.doi.org/10.1002/adma.201603051
Liu S H, Lin Y H, Guo W T, Li S M, Mai W C, Wang H, Fu R W, Wu D C. Chinese J Polym Sci, 2020, 38: 847-852. doi:10.1007/s10118-020-2419-5http://dx.doi.org/10.1007/s10118-020-2419-5
Zheng B, Lin X, Zhang X, Wu D, Matyjaszewski K. Adv Funct Mater, 2020, 30(41): 1907006. doi:10.1002/adfm.201907006http://dx.doi.org/10.1002/adfm.201907006
Xu F, Lai Y, Fu R, Wu D. J Mater Chem A, 2013, 1(16): 5001-5005. doi:10.1039/c3ta01694chttp://dx.doi.org/10.1039/c3ta01694c
Xu F, Tang Z, Huang S, Chen L, Liang Y, Mai W, Zhong H, Fu R, Wu D. Nat Commun, 2015, 6: 7221. doi:10.1038/ncomms8863http://dx.doi.org/10.1038/ncomms8863
Tang Z, Liu S, Lu Z, Lin X, Zheng B, Liu R, Wu D, Fu R. Chem Commun, 2017, 53(50): 6764-6767. doi:10.1039/c7cc03212ahttp://dx.doi.org/10.1039/c7cc03212a
Tang Y, Liu S, Zheng B, Liu R, Fu R, Wu D, Zhang M Q, Rong M Z. Chem Commun, 2018, 54(81): 11431-11434. doi:10.1039/c8cc05703fhttp://dx.doi.org/10.1039/c8cc05703f
Xu F, Lu Y, Ma J, Huang Z, Su Q, Fu R, Wu D. Chem Commun, 2017, 53(89): 12136-12139. doi:10.1039/c7cc06502ghttp://dx.doi.org/10.1039/c7cc06502g
Zou C, Wu D, Li M, Zeng Q, Xu F, Huang Z, Fu R. J Mater Chem, 2010, 20(4): 731-735. doi:10.1039/b917960ghttp://dx.doi.org/10.1039/b917960g
Xu F, Cai R, Zeng Q, Zou C, Wu D, Li F, Lu X, Liang Y, Fu R. J Mater Chem, 2011, 21(6): 1970-1976. doi:10.1039/c0jm02044chttp://dx.doi.org/10.1039/c0jm02044c
Li Z, Wu D, Liang Y, Xu F, Fu R. Nanoscale, 2013, 5(22): 10824-10828. doi:10.1039/c3nr04236ghttp://dx.doi.org/10.1039/c3nr04236g
Xu F, Xu J, Xu H J, Lu Y H, Yang H Y, Tang Z W, Lu Z T, Fu R W, Wu D C. Energy Storage Mater, 2017, 7: 8-16. doi:10.1016/j.ensm.2016.11.002http://dx.doi.org/10.1016/j.ensm.2016.11.002
Liang Y, Chen L, Zhuang D, Liu H, Fu R, Zhang M, Wu D, Matyjaszewski K. Chem Sci, 2017, 8(3): 2101-2106. doi:10.1039/c6sc03961hhttp://dx.doi.org/10.1039/c6sc03961h
Liu H, Li S, Yang H, Liu S, Chen L, Tang Z, Fu R, Wu D. Adv Mater, 2017, 29(27): 1700723. doi:10.1002/adma.201700723http://dx.doi.org/10.1002/adma.201700723
Mai W, Sun B, Chen L, Xu F, Liu H, Liang Y, Fu R, Wu D, Matyjaszewski K. J Am Chem Soc, 2015, 137(41): 13256-13259. doi:10.1021/jacs.5b08978http://dx.doi.org/10.1021/jacs.5b08978
Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M. Nat Mater, 2015, 14(8): 763-774. doi:10.1038/nmat4317http://dx.doi.org/10.1038/nmat4317
Han B H, Zhou W, Sayari A. J Am Chem Soc, 2003, 125(12): 3444-3445. doi:10.1021/ja029635jhttp://dx.doi.org/10.1021/ja029635j
Wu D, Li Z, Liang Y, Yang X, Zeng X, Fu R. Carbon, 2009, 47(3): 916-918. doi:10.1016/j.carbon.2008.12.027http://dx.doi.org/10.1016/j.carbon.2008.12.027
Li L, Liu C, He G, Fan D, Manthiram A. Energy Environ Sci, 2015, 8(11): 3274-3282. doi:10.1039/c5ee02616dhttp://dx.doi.org/10.1039/c5ee02616d
Fang Y, Lv Y, Che R, Wu H, Zhang X, Gu D, Zheng G, Zhao D. J Am Chem Soc, 2013, 135(4): 1524-1530. doi:10.1021/ja310849chttp://dx.doi.org/10.1021/ja310849c
Liang J, Du X, Gibson C, Du X W, Qiao S Z. Adv Mater, 2013, 25(43): 6226-6231. doi:10.1002/adma.201302569http://dx.doi.org/10.1002/adma.201302569
Fei H F, Li W, Bhardwaj A, Nuguri S, Ribbe A, Watkins J J. J Am Chem Soc, 2019, 141(42): 17006-17014. doi:10.1021/jacs.9b09572http://dx.doi.org/10.1021/jacs.9b09572
Kim S, Ju M, Lee J, Hwang J, Lee J. J Am Chem Soc, 2020, 142(20): 9250-9257. doi:10.1021/jacs.0c00311http://dx.doi.org/10.1021/jacs.0c00311
Liang Y, Fu R, Wu D. ACS Nano, 2013, 7(2): 1748-1754. doi:10.1021/nn305841ehttp://dx.doi.org/10.1021/nn305841e
Li Z, Wu D, Liang Y, Fu R, Matyjaszewski K. J Am Chem Soc, 2014, 136(13): 4805-4808. doi:10.1021/ja412192vhttp://dx.doi.org/10.1021/ja412192v
Wu D, Li Z, Zhong M, Kowalewski T, Matyjaszewski K. Angew Chem Int Ed, 2014, 53(15): 3957-3960. doi:10.1002/anie.201309836http://dx.doi.org/10.1002/anie.201309836
Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760-764. doi:10.1126/science.1168049http://dx.doi.org/10.1126/science.1168049
Xu F, Ding B, Qiu Y, Dong R, Zhuang W, Xu X, Han H, Yang J, Wei B, Wang H, Kaskel S. Matter, 2020, 3(1): 246-260. doi:10.1016/j.matt.2020.05.012http://dx.doi.org/10.1016/j.matt.2020.05.012
Liu S, Wu D. Matter, 2020, 3(1): 16-18. doi:10.1016/j.matt.2020.06.007http://dx.doi.org/10.1016/j.matt.2020.06.007
Huang J, Chen Y, Leng K, Liu S, Chen Z, Chen L, Wu D, Fu R. Chem Mater, 2020, 32(20): 8971-8980. doi:10.1021/acs.chemmater.0c03136http://dx.doi.org/10.1021/acs.chemmater.0c03136
Lin X, Tang Y, Su Q, Liu S, Wu D. CIESC J, 2020, 71(6): 2586-2598
Tian K, Wu Z, Xie F, Hu W, Li L. Energy & Fuels, 2017, 31(11): 12477-12486. doi:10.1021/acs.energyfuels.7b02223http://dx.doi.org/10.1021/acs.energyfuels.7b02223
Yang X, Zhang G, Zhong M, Wu D, Fu R. Langmuir, 2014, 30(30): 9183-9189. doi:10.1021/la5008846http://dx.doi.org/10.1021/la5008846
He X, He Q, Deng Y, Peng M, Chen H, Zhang Y, Yao S, Zhang M, Xiao D, Ma D, Ge B, Ji H. Nat Commun, 2019, 10(1): 3663. doi:10.1038/s41467-019-11619-6http://dx.doi.org/10.1038/s41467-019-11619-6
Liu S, Li J, Yan X, Su Q, Lu Y, Qiu J, Wang Z, Lin X, Huang J, Liu R, Zheng B, Chen L, Fu R, Wu D. Adv Mater, 2018, 30(12): 1706895. doi:10.1002/adma.201706895http://dx.doi.org/10.1002/adma.201706895
0
浏览量
184
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构