浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
E-mail: qchen@ciac.ac.cn
纸质出版日期:2021-07-20,
网络出版日期:2021-05-20,
收稿日期:2021-01-17,
修回日期:2021-02-23,
扫 描 看 全 文
张妍洁,陈全.非缠结对称缔合链在蠕变过程中的动力学行为研究[J].高分子学报,2021,52(07):796-805.
Yan-jie Zhang, Quan Chen. Creep Dynamics of Non-entangled Symmetric Associative Polymers[J]. ACTA POLYMERICA SINICA, 2021,52(7):796-805.
张妍洁,陈全.非缠结对称缔合链在蠕变过程中的动力学行为研究[J].高分子学报,2021,52(07):796-805. DOI: 10.11777/j.issn1000-3304.2021.21014.
Yan-jie Zhang, Quan Chen. Creep Dynamics of Non-entangled Symmetric Associative Polymers[J]. ACTA POLYMERICA SINICA, 2021,52(7):796-805. DOI: 10.11777/j.issn1000-3304.2021.21014.
首先介绍具有摩擦系数分布的Rouse链的动力学分析方法,并检验了其应用于预测未缠结缔合高分子动力学行为的可行性. 之后利用上述方法研究不同缔合点数量的高分子链分别在固定应变速率的启动剪切(start-up)和固定应力的蠕变(creep)测试过程中,链段的取向函数随时间的变化行为. 阐明了缔合体系在蠕变条件下,高分子链从链段相对独立的运动到整链协同运动的转变机制.
In this study
creep dynamics of associative polymers is analyzed on a basis of Rouse model. The association sites
i
.
e
.
the stickers
are introduced
via
increasing the segmental friction of the associative sites. First
we clarify the relationship between the Rouse model with frictional distribution and the sticky-Rouse model with stickers having fixed “lifetime”. Namely
we explain how to choose the friction coefficient so as to model the associative polymers with stickers of fixed lifetime. Comparison between the prediction of the Rouse model with frictional distribution and either the discrete or the continuous sticky-Rouse model rationalizes the choice. Second
we use the Rouse model with frictional distribution to analyze the conformational evolution of non-entangled symmetric associative polymers during the start-up shear and creep processes. During the start-up shear
the orientation function (representing an average segmental orientation of a given position of the chains) increases with time
and finally reaches the steady state. The orientation function increases from the ends to the center of the chains
akin to that of non-associative polymer chains. Nevertheless
we find a unique stepwise increase of orientation anisotropy at the sticky sites. We attribute this feature to the dynamic roles of the sticky and non-sticky segments. Namely
the sticky segments are strongly oriented by the shear flow field
and the non-sticky segments confined between the sticky segments are forced to transmit the orientational force of the sticky segments. During the creep process with fixed stress
the evolution of the conformation function experiences obviously two stages. In the early stage
only the segmental motion is activated
where the sticky and non-sticky segments behave accordingly to their intrinsic nature
i
.
e
.
the sticky and non-sticky segments increase and decrease the orientation function
respectively
so as to maintain the steady stress. In the second stage
the segmental motion extends gradually to the chain dimension and the orientation function of both the sticky and non-sticky segments achieve gradually to the steady-state.
sticky-Rouse模型摩擦系数分布启动剪切蠕变
sticky-Rouse modelFrictional distributionStart-up shearCreep
Stockmayer W H, Kennedy J W. Macromolecules, 1975, 8(3): 351-355. doi:10.1021/ma60045a022http://dx.doi.org/10.1021/ma60045a022
Hansen D R, Shen M. Macromolecules, 1975, 8(3): 343-348. doi:10.1021/ma60045a020http://dx.doi.org/10.1021/ma60045a020
Hall W F, de Wames R E. Macromolecules, 1975, 8(3): 349-350. doi:10.1021/ma60045a021http://dx.doi.org/10.1021/ma60045a021
Chen Q, Matsumiya Y, Masubuchi Y, Watanabe H, Inoue T. Macromolecules, 2011, 44(6): 1585-1602. doi:10.1021/ma102595fhttp://dx.doi.org/10.1021/ma102595f
Chen Q, Matsumiya Y, Iwamoto T, Nishida K, Matsushita Y. Macromolecules, 2012, 45(6): 2809-2819. doi:10.1021/ma3001687http://dx.doi.org/10.1021/ma3001687
Matsumiya Y, Chen Q, Uno A, Watanabe H, Takano A, Matsuoka K, Matsushita Y. Macromolecules, 2012, 45(17): 7050-7060. doi:10.1021/ma301453bhttp://dx.doi.org/10.1021/ma301453b
Chen Q. Rheol Acta, 2012, 51(6): 569-577. doi:10.1007/s00397-012-0623-0http://dx.doi.org/10.1007/s00397-012-0623-0
Chen Q. Rheol Acta, 2012, 51(4): 343-355. doi:10.1007/s00397-011-0596-4http://dx.doi.org/10.1007/s00397-011-0596-4
Watanabe H, Inoue T. Rheol Acta, 2004, 43(6): 634-644. doi:10.1007/s00397-004-0360-0http://dx.doi.org/10.1007/s00397-004-0360-0
Zhang Z, Huang C, Weiss R A, Chen Q. J Rheol, 2017, 61(6): 1199-1207. doi:10.1122/1.4997586http://dx.doi.org/10.1122/1.4997586
Song W, Tang P, Zhang H, Yang Y, Shi A C. Macromolecules, 2009, 42(16): 6300-6309. doi:10.1021/ma9007412http://dx.doi.org/10.1021/ma9007412
Zhang Z, Liu C, Cao X, Gao L, Chen Q. Macromolecules, 2016, 49(23): 9192-9202. doi:10.1021/acs.macromol.6b02017http://dx.doi.org/10.1021/acs.macromol.6b02017
Green M S, Tobolsky A V. J Chem Phys, 1946, 14(2): 80-92. doi:10.1063/1.1724109http://dx.doi.org/10.1063/1.1724109
Baxandall L G. Macromolecules, 1989, 22(4): 1982-1988. doi:10.1021/ma00194a076http://dx.doi.org/10.1021/ma00194a076
Jiang N, Zhang H, Tang P, Yang Y. Macromolecules, 2020, 53(9): 3438-3451. doi:10.1021/acs.macromol.0c00312http://dx.doi.org/10.1021/acs.macromol.0c00312
Yang Y, Qiu F, Zhang H, Yang Y. Macromolecules, 2017, 50(10): 4007-4021. doi:10.1021/acs.macromol.7b00040http://dx.doi.org/10.1021/acs.macromol.7b00040
Yang Y. Macromol Theor Simul, 1998, 7(5): 521-549. doi:10.1002/(sici)1521-3919(19980901)7:5<521::aid-mats521>3.0.co;2-mhttp://dx.doi.org/10.1002/(sici)1521-3919(19980901)7:5<521::aid-mats521>3.0.co;2-m
Yang Y L, Yu T Y. Die Makromolekulare Chemie, 1985, 186(3): 513-525
James H M, Guth E. J Polym Sci, Part A: Polym Chem, 1949, 4(2): 153-182. doi:10.1002/pol.1949.120040206http://dx.doi.org/10.1002/pol.1949.120040206
Rubinstein R H. Polymer Physics. Oxford: Oxford University Press, 2003. 255-257
Hansen D R S, M. Macromolecules, 1975, 8(3): 343-348. doi:10.1021/ma60045a020http://dx.doi.org/10.1021/ma60045a020
Marrucci G. J Non-Newton Fluid, 1987, 25(3): 385-386. doi:10.1016/0377-0257(87)85036-xhttp://dx.doi.org/10.1016/0377-0257(87)85036-x
Hassager O. J Chem Phys, 1974, 60(5): 2111-2124. doi:10.1063/1.1681321http://dx.doi.org/10.1063/1.1681321
Watanabe H, Inoue T. J Phys: Condens Mat, 2005, 17(19): R607-R636(630). doi:10.1088/0953-8984/17/19/r01http://dx.doi.org/10.1088/0953-8984/17/19/r01
0
浏览量
81
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构