浏览全部资源
扫码关注微信
南京大学化学化工学院 南京 210023
E-mail: zhenxu@nju.edu.cn
[ "蒋锡群,男,1961年生. 南京大学化学化工学院教授、博士生导师. 教育部“长江学者与创新团队”负责人,国家杰出青年基金获得者,国家重点研发计划项目负责人,国际生物材料科学与工程学会联合会会士(Fellow,Biomaterials Science and Engineering). 曾获得教育部自然科学一等奖,中国化学会高分子科学创新论文奖,中国生物医学工程学会“黄家驷生物医学工程奖”一等奖,中国生物材料学会生物医用高分子分会杰出贡献奖. 主要研究方向为:大分子自组装、高分子影像材料、高分子药物传输系统、蛋白大分子药物." ]
纸质出版日期:2021-07-20,
收稿日期:2021-01-20,
扫 描 看 全 文
王鑫,甄叙,蒋锡群.半导体共轭聚合物光学探针的设计及在自发光成像和光声成像中的应用[J].高分子学报,2021,52(07):687-707.
Xin Wang, Xu Zhen, Xi-qun Jiang. Semiconducting Polymer Nanoparticles for Optical Imaging: Self-luminescence Imaging and Photoacoustic Imaging[J]. ACTA POLYMERICA SINICA, 2021,52(7):687-707.
王鑫,甄叙,蒋锡群.半导体共轭聚合物光学探针的设计及在自发光成像和光声成像中的应用[J].高分子学报,2021,52(07):687-707. DOI: 10.11777/j.issn1000-3304.2021.21019.
Xin Wang, Xu Zhen, Xi-qun Jiang. Semiconducting Polymer Nanoparticles for Optical Imaging: Self-luminescence Imaging and Photoacoustic Imaging[J]. ACTA POLYMERICA SINICA, 2021,52(7):687-707. DOI: 10.11777/j.issn1000-3304.2021.21019.
光学成像因其无侵袭性、高时空分辨率和高灵敏度在生物医学领域得到迅速发展. 光学成像中自发光成像包括化学发光成像和长余辉成像不需实时光激发,避免了自发荧光的影响,可以得到较高的灵敏度和信噪比. 光声成像则是将光信号通过热膨胀转化为声信号,避免了光散射的影响,具有较高的组织穿透深度. 本文针对半导体共轭聚合物光学探针在自发光成像和光声成像技术中的应用进行综述,重点介绍了半导体共轭聚合物光学探针用于增强自发光成像、光声成像的信号强度的设计策略,以及响应型光声探针的设计原理. 阐述了通过降低光学探针与发光底物之间的能隙等策略增强自发光成像信号强度,通过淬灭荧光或加速热扩散等策略放大光声信号,以及通过特异性生物分子识别或相互作用激活的响应型光声探针的具体研究成果. 最后,对半导体共轭聚合物光学探针在光学成像领域存在的挑战和前景进行了展望.
Optical imaging plays an important role in the biomedical field due to its noninvasiveness
high spatiotemporal resolution
and high sensitivity capabilities
which allows for real-time visualization of numerous cellular and molecular processes in living organisms to investigate their biological functions. As one of the most widely used optical imaging techniques
fluorescence imaging suffers the relatively poor signal-to-background ratio (SBR) and low tissue penetration depth due to light scattering and tissue autofluorescence induced by real-time light excitation. To address these issues
self-luminescence and photoacoustic (PA) imaging have recently developed
which eliminate concurrent light excitation and detect acoustic signals with minimized acoustic scattering
respectively
leading to higher SBR and deeper imaging depth relative to fluorescence imaging. This review focuses on the recent development of semiconducting polymer nanoparticles (SPNs) for self-luminescence and PA imaging. The molecular engineering design approaches to amplifying the self-luminescence efficiency and PA brightness of SPNs are highlighted. The design strategies based on the chemically initiated electron exchange luminescence (CIEEL) to amplify the chemiluminescence intensity of SPNs and the afterglow luminescence imaging of phenylenevinylene-based SPNs are introduced. The design strategies including the fluorescence quenching or accelerated heat dissipation to amplify the PA brightness of SPNs are also introduced. Then
the SPN-based smart activatable probes for
in vivo
PA imaging are discussed. The facile modification and intraparticle engineering allow SPNs responsive to various biological and pathological indexes
including pH and reactive oxygen species (ROS)
and the designs and PA imaging applications of these SPN-based activatable probes are introduced in detail. Finally
current challenges and perspectives of SPNs in the biomedical field are proposed.
光学成像自发光成像光声成像半导体共轭聚合物光学探针生物医学应用
Optical imagingSelf-luminescence imagingPhotoacoustic imagingSemiconducting polymer nanoparticlesBiomedical applications
Jokerst J, Gambhir S. Acc Chem Res, 2011, 44(10): 1050-1060. doi:10.1021/ar200106ehttp://dx.doi.org/10.1021/ar200106e
Weissleder R, Mahmood U. Radiology, 2001, 219(2): 316-333. doi:10.1148/radiology.219.2.r01ma19316http://dx.doi.org/10.1148/radiology.219.2.r01ma19316
Weissleder R, Nahrendorf M. Proc Natl Acad Sci USA, 2015, 112(47): 14424-14428. doi:10.1073/pnas.1508524112http://dx.doi.org/10.1073/pnas.1508524112
Massoud T, Gambhir S. Genes Dev, 2003, 17(5): 545-580. doi:10.1101/gad.1047403http://dx.doi.org/10.1101/gad.1047403
Ni D, Bu W, Ehlerding E, Cai W, Shi J. Chem Soc Rev, 2017, 46(23): 7438-7468. doi:10.1039/c7cs00316ahttp://dx.doi.org/10.1039/c7cs00316a
Weissleder R, Pittet M. Nature, 2008, 452(7187): 580-589. doi:10.1038/nature06917http://dx.doi.org/10.1038/nature06917
Ring E, Ammer K. Physiol Meas, 2012, 33(3): R33-R46. doi:10.1088/0967-3334/33/3/r33http://dx.doi.org/10.1088/0967-3334/33/3/r33
Choi H, Gibbs S, Lee J, Kim S, Ashitate Y, Liu F, Hyun H, Park G, Xie Y, Bae S, Henary M, Frangioni J. Nat Biotechnol, 2013, 31(2): 148-153. doi:10.1038/nbt.2468http://dx.doi.org/10.1038/nbt.2468
Diao S, Hong G, Robinson J, Jiao L, Antaris A, Wu J, Choi C, Dai H. J Am Chem Soc, 2012, 134(41): 16971-16974. doi:10.1021/ja307966uhttp://dx.doi.org/10.1021/ja307966u
Huang J, Li J, Lyu Y, Miao Q, Pu K. Nat Mater, 2019, 18(10): 1133-1143. doi:10.1038/s41563-019-0378-4http://dx.doi.org/10.1038/s41563-019-0378-4
Yuan L, Lin W, Zheng K, He L, Huang W. Chem Soc Rev, 2013, 42(2): 622-661. doi:10.1039/c2cs35313jhttp://dx.doi.org/10.1039/c2cs35313j
Kowada T, Maeda H, Kikuchi K. Chem Soc Rev, 2015, 44(14): 4953-4972. doi:10.1039/c5cs00030khttp://dx.doi.org/10.1039/c5cs00030k
Ji S, Gao H, Mu W, Ni X, Yi X, Shen J, Liu Q, Bao P, Ding D. J Mater Chem B, 2018, 6(17): 2566-2573. doi:10.1039/c7tb02685dhttp://dx.doi.org/10.1039/c7tb02685d
Mao D, Liu J, Ji S, Wang T, Hu Y, Zheng D, Yang R, Kong D, Ding D. Biomaterials, 2017, 143: 109-119. doi:10.1016/j.biomaterials.2017.07.038http://dx.doi.org/10.1016/j.biomaterials.2017.07.038
Zhen X, Zhang J, Huang J, Xie C, Miao Q, Pu K. Angew Chem Int Ed, 2018, 57(26): 7804-7808. doi:10.1002/anie.201803321http://dx.doi.org/10.1002/anie.201803321
Yin C, Zhen X, Zhao H, Tang Y, Ji Y, Lyu Y, Fan Q, Huang W, Pu K. ACS Appl Mater Interfaces, 2017, 9(14): 12332-12339. doi:10.1021/acsami.7b02014http://dx.doi.org/10.1021/acsami.7b02014
Kobat D, Horton N, Xu C. J Biomed Opt, 2011, 16(10): 106014. doi:10.1117/1.3646209http://dx.doi.org/10.1117/1.3646209
Liu A, Zhao F, Zhao Y, Shangguan L, Liu S. Biosens Bioelectron, 2016, 81: 97-102. doi:10.1016/j.bios.2016.02.049http://dx.doi.org/10.1016/j.bios.2016.02.049
Zhang X, Zhang X, Yang B, Wei Y. Chinese J Polym Sci, 2014, 32(11): 1479-1488. doi:10.1007/s10118-014-1537-3http://dx.doi.org/10.1007/s10118-014-1537-3
Liu L, Liu W, Ji G, Wu Z, Xu B, Qian J, Tian W. Chinese J Polym Sci, 2019, 37(4): 401-408. doi:10.1007/s10118-019-2206-3http://dx.doi.org/10.1007/s10118-019-2206-3
Bi S, Ji B, Zhang Z, Zhang S. Chem Commun, 2013, 49(33): 3452-3454. doi:10.1039/c3cc39296ahttp://dx.doi.org/10.1039/c3cc39296a
Wang Z, Li J, Liu B, Hu J, Yao X, Li J. J Phys Chem B, 2005, 109(49): 23304-23311. doi:10.1021/jp055023khttp://dx.doi.org/10.1021/jp055023k
Lee D, Khaja S, Velasquez-Castano J, Dasari M, Sun C, Petros J, Taylor W, Murthy N. Nat Mater, 2007, 6(10): 765-769. doi:10.1038/nmat1983http://dx.doi.org/10.1038/nmat1983
Shi J, Sun X, Li J, Man H, Shen J, Yu Y, Zhang H. Biomaterials, 2015, 37: 260-270. doi:10.1016/j.biomaterials.2014.10.033http://dx.doi.org/10.1016/j.biomaterials.2014.10.033
Zhan J, Hong W, Meng S, Jiang S, Hai X. J Mater Chem, 2012, 22(47): 24713-24720. doi:10.1039/c2jm35650chttp://dx.doi.org/10.1039/c2jm35650c
Maldiney T, Sraiki G, Viana B, Gourier D, Richard C, Scherman D, Bessodes M, van den Eeckhout K, Poelman D, Smet P. Opt Mater Express, 2012, 2(3): 261-268. doi:10.1364/ome.2.000261http://dx.doi.org/10.1364/ome.2.000261
Xu M, Wang L. Rev Sci Instrum, 2006, 77(4): 041101. doi:10.1063/1.2195024http://dx.doi.org/10.1063/1.2195024
Zackrisson S, van de Ven S, Gambhir S. Cancer Res, 2014, 74(4): 979-1004. doi:10.1158/0008-5472.can-13-2387http://dx.doi.org/10.1158/0008-5472.can-13-2387
Lyu Y, Zeng J, Jiang Y, Zhen X, Wang T, Qiu S, Lou X, Gao M, Pu K. ACS Nano, 2018, 12(2): 1801-1810. doi:10.1021/acsnano.7b08616http://dx.doi.org/10.1021/acsnano.7b08616
Jiang Y, Li J, Zhen X, Xie C, Pu K. Adv Mater, 2018, 30(14): 1705980. doi:10.1002/adma.201705980http://dx.doi.org/10.1002/adma.201705980
Kim C, Favazza C, Wang L. Chem Rev, 2010, 110(5): 2756-2782. doi:10.1021/cr900266shttp://dx.doi.org/10.1021/cr900266s
Miao Q, Pu K. Bioconjugate Chem, 2016, 27(12): 2808-2823. doi:10.1021/acs.bioconjchem.6b00641http://dx.doi.org/10.1021/acs.bioconjchem.6b00641
Chen Q, Liu X, Chen J, Zeng J, Cheng Z, Liu Z. Adv Mater, 2015, 27(43): 6820-6827. doi:10.1002/adma.201503194http://dx.doi.org/10.1002/adma.201503194
Li J, Cheng F, Huang H, Li L, Zhu J. Chem Soc Rev, 2015, 44(21): 7855-7880. doi:10.1039/c4cs00476khttp://dx.doi.org/10.1039/c4cs00476k
Huang Y, Li X, Zhang L, Chen X, Liu C, Chen J, Wang Y, Shuai X. Chinese J Polym Sci, 2018, 36(10): 1139-1149. doi:10.1007/s10118-018-2141-8http://dx.doi.org/10.1007/s10118-018-2141-8
Jiang Y, Pu K. Small, 2017, 13(30): 1700710. doi:10.1002/smll.201700710http://dx.doi.org/10.1002/smll.201700710
Zhu H, Lai Z, Fang Y, Zhen X, Tan C, Qi X, Ding D, Chen P, Zhang H, Pu K. Small, 2017, 13(16): 1604139. doi:10.1002/smll.201604139http://dx.doi.org/10.1002/smll.201604139
Yi X, Li J, Zhu Z, Liu Q, Xue Q, Ding D. Drug Discov Today, 2017, 22(9): 1412-1420. doi:10.1016/j.drudis.2017.04.004http://dx.doi.org/10.1016/j.drudis.2017.04.004
Lyu Y, Fang Y, Miao Q, Zhen X, Ding D, Pu K. ACS Nano, 2016, 10(4): 4472-4481. doi:10.1021/acsnano.6b00168http://dx.doi.org/10.1021/acsnano.6b00168
Miao Q, Lyu Y, Ding D, Pu K. Adv Mater, 2016, 28(19): 3662-3668. doi:10.1002/adma.201505681http://dx.doi.org/10.1002/adma.201505681
Lyu Y, Xie C, Chechetka S, Miyako E, Pu K. J Am Chem Soc, 2016, 138(29): 9049-9052. doi:10.1021/jacs.6b05192http://dx.doi.org/10.1021/jacs.6b05192
Pu K, Chattopadhyay N, Rao J. J Control Release, 2016, 240: 312-322. doi:10.1016/j.jconrel.2016.01.004http://dx.doi.org/10.1016/j.jconrel.2016.01.004
Zhu C, Liu L, Yang Q, Lv F, Wang S. Chem Rev, 2012, 112(8): 4687-4735. doi:10.1021/cr200263whttp://dx.doi.org/10.1021/cr200263w
Wu C, Chiu D. Angew Chem Int Ed, 2013, 52(11): 3086-3109. doi:10.1002/anie.201205133http://dx.doi.org/10.1002/anie.201205133
Sun K, Tang Y, Li Q, Yin S, Qin W, Yu J, Chiu D, Liu Y, Yuan Z, Zhang X, Wu C. ACS Nano, 2016, 10(7): 6769-6781. doi:10.1021/acsnano.6b02386http://dx.doi.org/10.1021/acsnano.6b02386
Liu Z, Yang Y, Sun Z, Wu C. Opt Mater, 2016, 62: 1-6. doi:10.1016/j.optmat.2016.09.046http://dx.doi.org/10.1016/j.optmat.2016.09.046
Zhu H, Fang Y, Zhen X, Wei N, Gao Y, Luo K, Xu C, Duan H, Ding D, Chen P, Pu K. Chem Sci, 2016, 7(8): 5118-5125. doi:10.1039/c6sc01251ehttp://dx.doi.org/10.1039/c6sc01251e
Pu K, Shuhendler A, Jokerst J, Mei J, Gambhir S, Bao Z, Rao J. Nat Nanotechnol, 2014, 9(3): 233-239. doi:10.1038/nnano.2013.302http://dx.doi.org/10.1038/nnano.2013.302
Hong G, Lee J, Robinson J, Raaz U, Xie L, Huang N, Cooke J, Dai H. Nat Med, 2012, 18(12): 1841-1846. doi:10.1038/nm.2995http://dx.doi.org/10.1038/nm.2995
Zhu H, Li J, Qi X, Chen P, Pu K. Nano Lett, 2018, 18(1): 586-594. doi:10.1021/acs.nanolett.7b04759http://dx.doi.org/10.1021/acs.nanolett.7b04759
Heeger A. Chem Soc Rev, 2010, 39(7): 2354-2371. doi:10.1039/b914956mhttp://dx.doi.org/10.1039/b914956m
Dou L, Liu Y, Hong Z, Li G, Yang Y. Chem Rev, 2015, 115(23): 12633-12665. doi:10.1021/acs.chemrev.5b00165http://dx.doi.org/10.1021/acs.chemrev.5b00165
Gong X, Ma W, Ostrowski J, Bazan G, Moses D, Heeger A. Adv Mater, 2004, 16(7): 615-619. doi:10.1002/adma.200306230http://dx.doi.org/10.1002/adma.200306230
Ke C, Fang C, Yan J, Tseng P, Pyle J, Chen C, Lin S, Chen J, Zhang X, Chan Y. ACS Nano, 2017, 11(3): 3166-3177. doi:10.1021/acsnano.7b00215http://dx.doi.org/10.1021/acsnano.7b00215
Ahmed E, Morton S, Hammond P, Swager T. Adv Mater, 2013, 25(32): 4504-4510. doi:10.1002/adma.201301656http://dx.doi.org/10.1002/adma.201301656
Liu J, Geng J, Liao L, Thakor N, Gao X, Liu B. Polym Chem, 2014, 5(8): 2854-2862. doi:10.1039/c3py01587dhttp://dx.doi.org/10.1039/c3py01587d
Yu J, Chen Y, Zhang Y, Yao X, Qian C, Huang J, Zhu S, Jiang X, Shen Q, Gu Z. Chem Commun, 2014, 50(36): 4699-4702. doi:10.1039/c3cc49870khttp://dx.doi.org/10.1039/c3cc49870k
Pu K, Shuhendler A, Rao J. Angew Chem Int Ed, 2013, 52(39): 10325-10329. doi:10.1002/anie.201303420http://dx.doi.org/10.1002/anie.201303420
Miao Q, Pu K. Adv Mater, 2018, 30(49): 1801778. doi:10.1002/adma.201801778http://dx.doi.org/10.1002/adma.201801778
Cheng L, He W, Gong H, Wang C, Chen Q, Cheng Z, Liu Z. Adv Funct Mater, 2013, 23(47): 5893-5902. doi:10.1002/adfm.201301045http://dx.doi.org/10.1002/adfm.201301045
Yuan H, Wang B, Lv F, Liu L, Wang S. Adv Mater, 2014, 26(40): 6978-6982. doi:10.1002/adma.201400379http://dx.doi.org/10.1002/adma.201400379
Sharifi S, Behzadi S, Laurent S, Laird F, Stroeve P, Mahmoudi M. Chem Soc Rev, 2012, 41(6): 2323-2343. doi:10.1039/c1cs15188fhttp://dx.doi.org/10.1039/c1cs15188f
Wu C, Schneider T, Zeigler M, Yu J, Schiro P, Burnham D, McNeill J, Chiu D. J Am Chem Soc, 2010, 132(43): 15410-15417. doi:10.1021/ja107196shttp://dx.doi.org/10.1021/ja107196s
Wu C, Jin Y, Schneider T, Burnham D, Smith P, Chiu D. Angew Chem Int Ed, 2010, 49(49): 9436-9440. doi:10.1002/anie.201004260http://dx.doi.org/10.1002/anie.201004260
Feng X, Tang Y, Duan X, Liu L, Wang S. J Mater Chem, 2010, 20(7): 1312-1316. doi:10.1039/b915112ehttp://dx.doi.org/10.1039/b915112e
Howes P, Green M, Levitt J, Suhling K, Hughes M. J Am Chem Soc, 2010, 132(11): 3989-3996. doi:10.1021/ja1002179http://dx.doi.org/10.1021/ja1002179
Pu K, Shuhendler A, Valta M, Cui L, Saar M, Peehl D, Rao J. Adv Healthc Mater, 2014, 3(8): 1292-1298. doi:10.1002/adhm.201300534http://dx.doi.org/10.1002/adhm.201300534
Wu C, Hansen S, Hou Q, Yu J, Zeigler M, Jin Y, Burnham D, McNeill J, Olson J, Chiu D. Angew Chem Int Ed, 2011, 50(15): 3430-3434. doi:10.1002/anie.201007461http://dx.doi.org/10.1002/anie.201007461
Li K, Ding D, Huo D, Pu K, Thao N, Hu Y, Li Z, Liu B. Adv Funct Mater, 2012, 22(15): 3107-3115. doi:10.1002/adfm.201102234http://dx.doi.org/10.1002/adfm.201102234
Hong G, Zou Y, Antaris A, Diao S, Wu D, Cheng K, Zhang X, Chen C, Liu B, He Y, Wu J, Yuan J, Zhang B, Tao Z, Fukunaga C, Dai H. Nat Commun, 2014, 5(1):4206. doi:10.1038/ncomms5206http://dx.doi.org/10.1038/ncomms5206
Shuhendler A, Pu K, Cui L, Uetrecht J, Rao J. Nat Biotechnol, 2014, 32(4): 373-380. doi:10.1038/nbt.2838http://dx.doi.org/10.1038/nbt.2838
Kietzke T, Neher D, Landfester K, Montenegro R, Güntner R, Scherf U. Nat Mater, 2003, 2(6): 408-412. doi:10.1038/nmat889http://dx.doi.org/10.1038/nmat889
Kurokawa N, Yoshikawa H, Hirota N, Hyodo K, Masuhara H. ChemPhysChem, 2004, 5(10): 1609-1615. doi:10.1002/cphc.200400117http://dx.doi.org/10.1002/cphc.200400117
Hai Z, Li J, Wu J, Xu J, Liang G. J Am Chem Soc, 2017, 139(3): 1041-1044. doi:10.1021/jacs.6b11041http://dx.doi.org/10.1021/jacs.6b11041
Hai Z, Wu J, Wang L, Xu J, Zhang H, Liang G. Anal Chem, 2017, 89(13): 7017-7021. doi:10.1021/acs.analchem.7b00567http://dx.doi.org/10.1021/acs.analchem.7b00567
Xie C, Zhen X, Miao Q, Lyu Y, Pu K. Adv Mater, 2018, 30(21): 1801331. doi:10.1002/adma.201801331http://dx.doi.org/10.1002/adma.201801331
Zhen X, Xie C, Pu K. Angew Chem Int Ed, 2018, 57(15): 3938-3942. doi:10.1002/anie.201712550http://dx.doi.org/10.1002/anie.201712550
Zhen X, Zhang C, Xie C, Miao Q, Lim K, Pu K. ACS Nano, 2016, 10(6): 6400-6409. doi:10.1021/acsnano.6b02908http://dx.doi.org/10.1021/acsnano.6b02908
Zhen X, Tao Y, An Z, Chen P, Xu C, Chen R, Huang W, Pu K. Adv Mater, 2017, 29(33): 1606665. doi:10.1002/adma.201606665http://dx.doi.org/10.1002/adma.201606665
Zhang J, Zhen X, Upputuri P, Pramanik M, Chen P, Pu K. Adv Mater, 2017, 29(6): 1604764. doi:10.1002/adma.201604764http://dx.doi.org/10.1002/adma.201604764
Yin C, Zhen X, Fan Q, Huang W, Pu K. ACS Nano, 2017, 11(4): 4174-4182. doi:10.1021/acsnano.7b01092http://dx.doi.org/10.1021/acsnano.7b01092
Pu K, Mei J, Jokerst J, Hong G, Antaris A, Chattopadhyay N, Shuhendler A, Kurosawa T, Zhou Y, Gambhir S, Bao Z, Rao J. Adv Mater, 2015, 27(35): 5184-5190. doi:10.1002/adma.201502285http://dx.doi.org/10.1002/adma.201502285
Xie C, Upputuri P, Zhen X, Pramanik M, Pu K. Biomaterials, 2017, 119: 1-8. doi:10.1016/j.biomaterials.2016.12.004http://dx.doi.org/10.1016/j.biomaterials.2016.12.004
Zhen X, Feng X, Xie C, Zheng Y, Pu K. Biomaterials, 2017, 127: 97-106. doi:10.1016/j.biomaterials.2017.03.003http://dx.doi.org/10.1016/j.biomaterials.2017.03.003
Xie C, Zhen X, Lyu Y, Pu K. Adv Mater, 2017, 29(44): 1703693. doi:10.1002/adma.201703693http://dx.doi.org/10.1002/adma.201703693
Jiang Y, Upputuri P, Xie C, Lyu Y, Zhang L, Xiong Q, Pramanik M, Pu K. Nano Lett, 2017, 17(8): 4964-4969. doi:10.1021/acs.nanolett.7b02106http://dx.doi.org/10.1021/acs.nanolett.7b02106
Wu J, You L, Lan L, Lee H, Chaudhry S, Li R, Cheng J, Mei J. Adv Mater, 2017, 29(41): 1703403. doi:10.1002/adma.201703403http://dx.doi.org/10.1002/adma.201703403
Li J, Chen Y, Yang Y, Kawazoe N, Chen G. J Mater Chem B, 2017, 5(7): 1353-1362. doi:10.1039/c6tb03276ahttp://dx.doi.org/10.1039/c6tb03276a
Reczek C, Chandel N. Curr Opin Cell Biol, 2015, 33: 8-13. doi:10.1016/j.ceb.2014.09.010http://dx.doi.org/10.1016/j.ceb.2014.09.010
Lyu Y, Zhen X, Miao Y, Pu K. ACS Nano, 2017, 11(1): 358-367. doi:10.1021/acsnano.6b05949http://dx.doi.org/10.1021/acsnano.6b05949
Chen Z, Liu Z, Li Z, Ju E, Gao N, Zhou L, Ren J, Qu X. Biomaterials, 2015, 39: 15-22. doi:10.1016/j.biomaterials.2014.10.066http://dx.doi.org/10.1016/j.biomaterials.2014.10.066
Chen X, Wang F, Hyun J, Wei T, Qiang J, Ren X, Shin I, Yoon J. Chem Soc Rev, 2016, 45(10): 2976-3016. doi:10.1039/c6cs00192khttp://dx.doi.org/10.1039/c6cs00192k
Li P, Liu L, Xiao H, Zhang W, Wang L, Tang B. J. Am Chem Soc, 2016, 138(9): 2893-2896. doi:10.1021/jacs.5b11784http://dx.doi.org/10.1021/jacs.5b11784
Ni X, Zhang X, Duan X, Zheng H, Xue X, Ding D. Nano Lett, 2019, 19(1): 318-330. doi:10.1021/acs.nanolett.8b03936http://dx.doi.org/10.1021/acs.nanolett.8b03936
Jiang Y, Huang J, Zhen X, Zeng Z, Li J, Xie C, Miao Q, Chen J, Chen P, Pu K. Nat Commun, 2019, 10(1): 2064. doi:10.1038/s41467-019-10119-xhttp://dx.doi.org/10.1038/s41467-019-10119-x
Miao Q, Xie C, Zhen X, Lyu Y, Duan H, Liu X, Jokerst J, Pu K. Nat Biotechnol, 2017, 35(11): 1102-1110. doi:10.1038/nbt.3987http://dx.doi.org/10.1038/nbt.3987
Cui D, Li P, Zhen X, Li J, Jiang Y, Yu A, Hu X, Pu K. Adv Funct Mater, 2019, 29(38): 1903461. doi:10.1002/adfm.201903461http://dx.doi.org/10.1002/adfm.201903461
Wang Z, Zhen X, Upputuri P, Jiang Y, Lau J, Pramanik M, Pu K, Xing B. ACS Nano, 2019, 13(5): 5816-5825. doi:10.1021/acsnano.9b01411http://dx.doi.org/10.1021/acsnano.9b01411
Jiang Y, Upputuri P, Xie C, Zeng Z, Sharma A, Zhen X, Li J, Huang J, Pramanik M, Pu K. Adv Mater, 2019, 31(11): 1808166. doi:10.1002/adma.201808166http://dx.doi.org/10.1002/adma.201808166
Lyu Y, Zeng J, Jiang Y, Zhen X, Wang T, Qiu S, Lou X, Gao M, Pu K. ACS Nano, 2018, 12(2): 1801-1810. doi:10.1021/acsnano.7b08616http://dx.doi.org/10.1021/acsnano.7b08616
Xie C, Zhen X, Lei Q, Ni R, Pu K. Adv Funct Mater, 2017, 27(8): 1605397. doi:10.1002/adfm.201605397http://dx.doi.org/10.1002/adfm.201605397
Jiang Y, Cui D, Fang Y, Zhen X, Upputuri P, Pramanik M, Ding D, Pu K. Biomaterials, 2017, 145: 168-177. doi:10.1016/j.biomaterials.2017.08.037http://dx.doi.org/10.1016/j.biomaterials.2017.08.037
Feng G, Zhang G, Ding D. Chem Soc Rev, 2020, 49(22): 8179-8234. doi:10.1039/d0cs00671hhttp://dx.doi.org/10.1039/d0cs00671h
Pu K, Chattopadhyay N, Rao J. J Control Release, 2016, 240: 312-322. doi:10.1016/j.jconrel.2016.01.004http://dx.doi.org/10.1016/j.jconrel.2016.01.004
Xie C, Zhou W, Zeng Z, Fan Q, Pu K. Chem Sci, 2020, 11(39): 10553-10570. doi:10.1039/d0sc01721chttp://dx.doi.org/10.1039/d0sc01721c
Chen C, Ou H, Liu R, Ding D. Adv Mater, 2020, 32(3): 1806331. doi:10.1002/adma.201806331http://dx.doi.org/10.1002/adma.201806331
Guo B, Sheng Z, Hu D, Li A, Xu S, Manghnani P N, Liu C, Guo L, Zheng H, Liu B. ACS Nano, 2017, 11(10): 10124-10134. doi:10.1021/acsnano.7b04685http://dx.doi.org/10.1021/acsnano.7b04685
Liu J, Cai X, Pan H, Bandla A, Chuan C, Wang S, Thakor N, Liao L, Liu B. Small, 2018, 14(13): 1703732. doi:10.1002/smll.201703732http://dx.doi.org/10.1002/smll.201703732
Wei Z, Xin F, Zhang J, Wu M, Qiu T, Lan Y, Qiao S, Liu X, Liu J. Chem Commun, 2020, 56(7): 1093-1096. doi:10.1039/c9cc07821ehttp://dx.doi.org/10.1039/c9cc07821e
Dong T, Wen K, Chen J, Xie J, Fan W, Ma H, Yang L, Wu X, Xu F, Peng A, Huang H. Adv Funct Mater, 2018, 28(23): 1800135. doi:10.1002/adfm.201800135http://dx.doi.org/10.1002/adfm.201800135
Bao B, Tong L, Xu Y, Zhang J, Zhai X, Su P, Weng L, Wang L. Nanoscale, 2019, 11(31): 14727-14733. doi:10.1039/c9nr03490khttp://dx.doi.org/10.1039/c9nr03490k
Chen Y, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S. Nano Lett, 2011, 11(2): 348-354. doi:10.1021/nl1042006http://dx.doi.org/10.1021/nl1042006
David G, Wayne K, Kenneth E, Gerald D, Arun M, Humphrey J, Roberto M, Simon R. J Appl Phys, 2003, 93(2): 793-818
Duan Y, Hu D, Guo B, Shi Q, Wu M, Xu S, Kenry, Liu X, Jiang J, Sheng Z, Zheng H, Liu B. Adv Funct Mater, 2020, 30(1): 1907077. doi:10.1002/adfm.201907077http://dx.doi.org/10.1002/adfm.201907077
Lovell J, Jin C, Huynh E, Jin H, Kim C, Rubinstein J, Chan W, Cao W, Wang L, Zheng G. Nat Mater, 2011, 10(4): 324-332. doi:10.1038/nmat2986http://dx.doi.org/10.1038/nmat2986
Li L, An H, Peng B, Zheng R, Wang H. Mater Horiz, 2019, 6(9): 1794-1811. doi:10.1039/c8mh01670dhttp://dx.doi.org/10.1039/c8mh01670d
Nie L, Chen X. Chem Soc Rev, 2014, 43(20): 7132-7170. doi:10.1039/c4cs00086bhttp://dx.doi.org/10.1039/c4cs00086b
Di J, Kim J, Hu Q, Jiang X, Gu Z. J Control Release, 2015, 220: 592-599. doi:10.1016/j.jconrel.2015.08.033http://dx.doi.org/10.1016/j.jconrel.2015.08.033
Wang Z, Upputuri P, Zhen X, Zhang R, Jiang Y, Ai X, Zhang Z, Hu M, Meng Z, Lu Y, Zheng Y, Pu K, Pramanik M, Xing B. Nano Res, 2019, 12(1): 49-55. doi:10.1007/s12274-018-2175-9http://dx.doi.org/10.1007/s12274-018-2175-9
Zhang J, Zhen X, Zeng J, Pu K. Anal Chem, 2018, 90(15): 9301-9307. doi:10.1021/acs.analchem.8b01879http://dx.doi.org/10.1021/acs.analchem.8b01879
0
浏览量
199
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构