浏览全部资源
扫码关注微信
浙江大学化学系 杭州 310027
[ "刘昭明,男,1991年生. 浙江大学化学系研究员,2013和2017年于浙江大学化学系分别获得理学学士、理学博士学位. 2017年至今先后为浙江大学化学系博士后、助理研究员、特聘副研究员、百人计划研究员. 2020年获得国家自然科学基金优秀青年科学基金支持,目前主要从事无机离子聚合的机理与应用研究" ]
纸质出版日期:2021-6-3,
网络出版日期:2021-5-11,
收稿日期:2021-1-28,
修回日期:2021-4-7,
扫 描 看 全 文
方威风, 唐睿康, 刘昭明. 无机离子聚合与交联及其应用[J]. 高分子学报, 2021,52(6):617-633.
Wei-feng Fang, Rui-kang Tang, Zhao-ming Liu. Polymerization and Crosslinking of Inorganic Ionic Oligomers for Material Construction[J]. Acta Polymerica Sinica, 2021,52(6):617-633.
方威风, 唐睿康, 刘昭明. 无机离子聚合与交联及其应用[J]. 高分子学报, 2021,52(6):617-633. DOI: 10.11777/j.issn1000-3304.2021.21034.
Wei-feng Fang, Rui-kang Tang, Zhao-ming Liu. Polymerization and Crosslinking of Inorganic Ionic Oligomers for Material Construction[J]. Acta Polymerica Sinica, 2021,52(6):617-633. DOI: 10.11777/j.issn1000-3304.2021.21034.
传统无机材料合成遵循经典晶体生长方式,常以粉末颗粒形式存在,极大地限制了无机材料的性能. 高分子材料通过单体的可控聚合与交联实现了材料的连续、可塑制备,极大地扩大了材料的应用范围. 借鉴高分子化学中的封端策略,我们将无机离子寡聚体作为无机单体,替代了传统的离子前驱体,实现了无机离子化合物的聚合与交联,从而能够“像制造高分子一样制造无机物”. 本文从材料合成的角度出发,介绍了无机、高分子反应前驱体及材料制备模式,重点介绍了无机离子寡聚体及其聚合与交联过程,进一步展开介绍了基于无机离子聚合与交联在材料合成与应用方面的成果. 无机离子聚合与交联反应体系的提出,在材料合成方面促进了高分子与无机化学的融合,一定程度上打破对传统无机材料合成的认知,为新型功能材料的合成提供新的思路.
This review introduces the discovery of inorganic ionic oligomers and their controllable polymerization and crosslinking for materials preparation. It is well recognized that classical nucleation and crystal growth commonly lead to the formation of inorganic particles
rather than continuously structured bulks
limiting the properties of many inorganic materials. It is due to the participation of inorganic ions as the classical precursors
which are less controllable in the process of material synthesis. Although numerous non-classical precursors
such as pre-nucleation clusters
dense liquid phases and polymer-induced liquid precursors have been discovered
they are still uncontrollable during non-classical crystallization. In contrast
polymers can be continuously and malleably constructed through controllable polymerization and crosslinking of their monomer precursors
which expand the applications of polymeric materials. It indicates that a controllable inorganic precursor is the key to regulating the synthesizing process of a material. Inspired by the capping strategy in polymer chemistry
the hydrogen-bond based capping strategy on inorganic ionic oligomers is established. Typically
the calcium carbonate (CaCO
3
) ionic oligomers end-capped by triethylamine (TEA) is presented
and these oligomers have 3−11 repeated CaCO
3
units with an average length of ~1.2 nm. The CaCO
3
ionic oligomers can act as the inorganic monomers to replace traditional ions as precursors. And the removal of TEA initiates the polymerization and crosslinking of inorganic ionic substances. This strategy has generality and this achievement can be used to produce inorganic materials in a way analogous to polymers. The polymerization and crosslinking of inorganic ionic oligomers can be the fundamental way for advanced material preparation. It demonstrates the moldable construction of inorganic materials from nano-scales to macro-scales
and even the building of single crystals. And it is readily for the reconstruction of hierarchical structured bio-tissues
such as sea urchin spine and human enamel. Moreover
the organic-inorganic co-polymerization is established by using inorganic ionic oligomers
which enables the doping of molecular scaled inorganics into organic polymers. The incorporation of inorganic ionic oligomers into organic polymers enables the construction of biomimetic hybrid materials
improving the functions of polymers. The establishment of polymerization and crosslinking of inorganic ionic oligomers promote the fusion of polymer and inorganic chemistry. However
this is a newly raised field in chemistry
which needs further detailed investigations. It is believed that this achievement will provide more strategies for functional material production in the future.
反应前驱体无机离子寡聚体聚合与交联有机-无机复合仿生材料
PrecursorsInorganic ionic oligomersPolymerization and crosslinkingOrganic-inorganic compositeBiomimetic materials
Garcia Y, Su B L . Eur J Inorg Chem , 2019 . 2019 ( 27 ): 3123 - 3125 . DOI:10.1002/ejic.201900740http://doi.org/10.1002/ejic.201900740 .
Militzer M . Science , 2002 . 298 ( 5595 ): 975 - 976 . DOI:10.1126/science.1078210http://doi.org/10.1126/science.1078210 .
Hu C L, Li Z J . Constr Build Mater , 2015 . 90 80 - 90 . DOI:10.1016/j.conbuildmat.2015.05.008http://doi.org/10.1016/j.conbuildmat.2015.05.008 .
Lin Y C, Karlsson M, Bettinelli M . Top Curr Chem (Z) , 2016 . 374 ( 2 ): 21 - 67 . DOI:10.1007/s41061-016-0023-5http://doi.org/10.1007/s41061-016-0023-5 .
Riley F L . J Am Ceram Soc , 2000 . 83 ( 2 ): 245 - 265 . DOI:10.1111/j.1151-2916.2000.tb01182.xhttp://doi.org/10.1111/j.1151-2916.2000.tb01182.x .
Meyers M A, Chen P Y, Lin A Y M, Seki Y . Prog Mater Sci , 2008 . 53 ( 1 ): 1 - 206 . DOI:10.1016/j.pmatsci.2007.05.002http://doi.org/10.1016/j.pmatsci.2007.05.002 .
Xu H H K, Wang P, Wang L, Bao C Y, Chen Q M, Weir M D, Chow L C, Zhao L, Zhou X D, Reynolds M A . Bone Res , 2017 . 5 17056 DOI:10.1038/boneres.2017.56http://doi.org/10.1038/boneres.2017.56 .
Karthika S, Radhakrishnan T K, Kalaichelvi P . Cryst Growth Des , 2016 . 16 ( 11 ): 6663 - 6681 . DOI:10.1021/acs.cgd.6b00794http://doi.org/10.1021/acs.cgd.6b00794 .
Thanh N T, Maclean N, Mahiddine S . Chem Rev , 2014 . 114 ( 15 ): 7610 - 7630 . DOI:10.1021/cr400544shttp://doi.org/10.1021/cr400544s .
Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R . Adv Mater , 2017 . 29 ( 14 ): 1605903 - 1605921 . DOI:10.1002/adma.201605903http://doi.org/10.1002/adma.201605903 .
Currey J D . Science , 2005 . 309 ( 5732 ): 253 - 254 . DOI:10.1126/science.1113954http://doi.org/10.1126/science.1113954 .
Lakes R . Nature , 1993 . 361 ( 6412 ): 511 - 515 . DOI:10.1038/361511a0http://doi.org/10.1038/361511a0 .
Mann S . Struct Bond , 1983 . 54 125 - 174.
Huang W, Restrepo D, Jung J Y, Su F Y, Liu Z, Ritchie R O, McKittrick J, Zavattieri P, Kisailus D . Adv Mater , 2019 . 31 ( 43 ): e1901561 DOI:10.1002/adma.201901561http://doi.org/10.1002/adma.201901561 .
De Yoreo J J, Gilbert P U, Sommerdijk N A, Penn R L, Whitelam S, Joester D, Zhang H, Rimer J D, Navrotsky A, Banfield J F, Wallace A F, Michel F M, Meldrum F C, Colfen H, Dove P M . Science , 2015 . 349 ( 6247 ): aaa6760 DOI:10.1126/science.aaa6760http://doi.org/10.1126/science.aaa6760 .
Truby R L, Lewis J A . Nature , 2016 . 540 ( 7633 ): 371 - 378 . DOI:10.1038/nature21003http://doi.org/10.1038/nature21003 .
Wesson J P, Williams T C . J Polym Sci Polm Chem Ed , 1980 . 18 ( 3 ): 959 - 965 . DOI:10.1002/pol.1980.170180317http://doi.org/10.1002/pol.1980.170180317 .
Caseri W . Chem Soc Rev , 2016 . 45 ( 19 ): 5187 - 5199 . DOI:10.1039/C6CS00168Hhttp://doi.org/10.1039/C6CS00168H .
Caminade A M, Hey-Hawkins E, Manners I . Chem Soc Rev , 2016 . 45 ( 19 ): 5144 - 5146 . DOI:10.1039/C6CS90086Khttp://doi.org/10.1039/C6CS90086K .
Hu S, Liu H, Wang P, Wang X . J Am Chem Soc , 2013 . 135 ( 30 ): 11115 - 11124 . DOI:10.1021/ja403471dhttp://doi.org/10.1021/ja403471d .
Wang P P, Yang Y, Zhuang J, Wang X . J Am Chem Soc , 2013 . 135 ( 18 ): 6834 - 6837 . DOI:10.1021/ja403065zhttp://doi.org/10.1021/ja403065z .
Zhang S, Shi W, Siegler T D, Gao X, Ge F, Korgel B A, He Y, Li S, Wang X . Angew Chem Int Ed , 2019 . 58 ( 26 ): 8730 - 8735 . DOI:10.1002/anie.201902240http://doi.org/10.1002/anie.201902240 .
Zhang S, Shi W, Rong S, Li S, Zhuang J, Wang X . J Am Chem Soc , 2020 . 142 ( 3 ): 1375 - 1381 . DOI:10.1021/jacs.9b10900http://doi.org/10.1021/jacs.9b10900 .
Liu J, Shi W, Wang X . J Am Chem Soc , 2019 . 141 ( 47 ): 18754 - 18758 . DOI:10.1021/jacs.9b08818http://doi.org/10.1021/jacs.9b08818 .
Liu J, Liu N, Wang H, Shi W, Zhuang J, Wang X . J Am Chem Soc , 2020 . 142 ( 41 ): 17557 - 17563 . DOI:10.1021/jacs.0c07375http://doi.org/10.1021/jacs.0c07375 .
Sleutel M, Lutsko J, van Driessche A E, Duran-Olivencia M A, Maes D . Nat Commun , 2014 . 5 5598 DOI:10.1038/ncomms6598http://doi.org/10.1038/ncomms6598 .
Jiang S, Pan H, Chen Y, Xu X, Tang R . Faraday Discuss , 2015 . 179 451 - 461 . DOI:10.1039/C4FD00212Ahttp://doi.org/10.1039/C4FD00212A .
Jin W J, Jiang S Q, Pan H H, Tang R K . Crystals , 2018 . 8 ( 1 ): 48 - 71 . DOI:10.3390/cryst8010048http://doi.org/10.3390/cryst8010048 .
Gower L B, Odom D J . J Cryst Growth , 2000 . 210 ( 4 ): 719 - 734 . DOI:10.1016/S0022-0248(99)00749-6http://doi.org/10.1016/S0022-0248(99)00749-6 .
Li D, Nielsen M H, Lee J R, Frandsen C, Banfield J F, De Yoreo J J . Science , 2012 . 336 ( 6084 ): 1014 - 1018 . DOI:10.1126/science.1219643http://doi.org/10.1126/science.1219643 .
Habraken W J, Tao J, Brylka L J, Friedrich H, Bertinetti L, Schenk A S, Verch A, Dmitrovic V, Bomans P H, Frederik P M, Laven J, van der Schoot P, Aichmayer B, de With G, DeYoreo J J, Sommerdijk N A . Nat Commun , 2013 . 4 1507 DOI:10.1038/ncomms2490http://doi.org/10.1038/ncomms2490 .
Gebauer D, Volkel A, Colfen H . Science , 2008 . 322 ( 5909 ): 1819 - 1822 . DOI:10.1126/science.1164271http://doi.org/10.1126/science.1164271 .
Liu Z, Shao C, Jin B, Zhang Z, Zhao Y, Xu X, Tang R . Nature , 2019 . 574 ( 7778 ): 394 - 398 . DOI:10.1038/s41586-019-1645-xhttp://doi.org/10.1038/s41586-019-1645-x .
Olafson K N, Li R, Alamani B G, Rirner J D . Chem Mater , 2016 . 28 ( 23 ): 8453 - 8465 . DOI:10.1021/acs.chemmater.6b03550http://doi.org/10.1021/acs.chemmater.6b03550 .
Cui Fuzhai(崔福斋), Feng Qinfling(冯庆玲). Biomineralization(生物矿化). Beijing(北京): Tsinghua University Press(清华大学出版社), 2012. 58−60
Yoreo D J . J Rev Mineral Geochem , 2003 . 54 ( 1 ): 57 - 93 . DOI:10.2113/0540057http://doi.org/10.2113/0540057 .
Chernov A A . Contemp Phys , 1989 . 30 ( 4 ): 251 - 276 . DOI:10.1080/00107518908225517http://doi.org/10.1080/00107518908225517 .
Chernov A, Lexandera A. Modern Crystallography Ⅲ: Crystal Growth, Vol. 36. Berlin: Springer-Verlag 1984. 13−37
Chernov A A . Physics-Uspekhi , 1961 . 4 ( 1 ): 116 - 148 . DOI:10.1070/PU1961v004n01ABEH003328http://doi.org/10.1070/PU1961v004n01ABEH003328 .
Scheck J, Fuhrer L M, Wu B, Drechsler M, Gebauer D . Chem-Eur J , 2019 . 25 ( 56 ): 13002 - 13007 . DOI:10.1002/chem.201902528http://doi.org/10.1002/chem.201902528 .
Avaro J T, Wolf S L P, Hauser K, Gebauer D . Angew Chem Int Ed , 2020 . 59 ( 15 ): 6155 - 6159 . DOI:10.1002/anie.201915350http://doi.org/10.1002/anie.201915350 .
Kellermeier M, Raiteri P, Berg J K, Kempter A, Gale J D, Gebauer D . ChemPhysChem , 2016 . 17 ( 21 ): 3535 - 3541 . DOI:10.1002/cphc.201600653http://doi.org/10.1002/cphc.201600653 .
Schubertt R, Meyer A, Baitan D, Dierks K, Perbandt M, Betzel C . Cryst Growth Des , 2017 . 17 ( 3 ): 954 - 958 . DOI:10.1021/acs.cgd.6b01826http://doi.org/10.1021/acs.cgd.6b01826 .
Vekilov P G . Cryst Growth Des , 2004 . 4 ( 4 ): 671 - 685 . DOI:10.1021/cg049977whttp://doi.org/10.1021/cg049977w .
Ianiro A, Wu H, van Rijt M M J, Vena M P, Keizer A D A, Esteves A C C, Tuinier R, Friedrich H, Sommerdijk N, Patterson J P . Nat Chem , 2019 . 11 ( 4 ): 320 - 328 . DOI:10.1038/s41557-019-0210-4http://doi.org/10.1038/s41557-019-0210-4 .
Kato T . Adv Mater , 2000 . 12 ( 20 ): 1543 - 1546 . DOI:10.1002/1521-4095(200010)12:20<1543::AID-ADMA1543>3.0.CO;2-Phttp://doi.org/10.1002/1521-4095(200010)12:20<1543::AID-ADMA1543>3.0.CO;2-P .
Wohlrab S, Colfen H, Antonietti M . Angew Chem Int Ed , 2005 . 44 ( 26 ): 4087 - 4092 . DOI:10.1002/anie.200462467http://doi.org/10.1002/anie.200462467 .
Kim Y Y, Douglas E P, Gower L B . Langmuir , 2007 . 23 ( 9 ): 4862 - 4870 . DOI:10.1021/la061975lhttp://doi.org/10.1021/la061975l .
Pouget E M, Bomans P H H, Goos J A C M, Frederik P M, Sommerdijk N A J M. Science, 2009, 323(5920): 1455−1458
Ruiz-Agudo E, Burgos-Cara A, Ruiz-Agudo C, Ibanez-Velasco A, Colfen H, Rodriguez-Navarro C . Nat Commun , 2017 . 8 ( 1 ): 768 DOI:10.1038/s41467-017-00756-5http://doi.org/10.1038/s41467-017-00756-5 .
Dey A, Bomans P H H, Mueller F A, Will J, Frederik P M, With G D, Sommerdijk N A J M . Nat Mater , 2010 . 9 ( 12 ): 1010 - 1014 . DOI:10.1038/nmat2900http://doi.org/10.1038/nmat2900 .
Li H J, Yan D, Cai H Q, Yi H B, Min X B, Xia F F . Phys Chem Chem Phys , 2017 . 19 ( 18 ): 11390 - 11403 . DOI:10.1039/C7CP00428Ahttp://doi.org/10.1039/C7CP00428A .
Das B . J Phys Chem A , 2018 . 122 ( 2 ): 652 - 661 . DOI:10.1021/acs.jpca.7b09470http://doi.org/10.1021/acs.jpca.7b09470 .
Gebauer D, Kellermeier M, Gale J D, Bergstrom L, Colfen H . Chem Soc Rev , 2014 . 43 ( 7 ): 2348 - 2371 . DOI:10.1039/C3CS60451Ahttp://doi.org/10.1039/C3CS60451A .
van Driessche A E S, van Gerven N, Bomans P H H, Joosten R R M, Friedrich H, Gil-Carton D, Sommerdijk N, Sleutel M . Nature , 2018 . 556 ( 7699 ): 89 - 94 . DOI:10.1038/nature25971http://doi.org/10.1038/nature25971 .
Weiner S, Sagi I, Addadi L . Science , 2005 . 309 ( 5737 ): 1027 - 1028 . DOI:10.1126/science.1114920http://doi.org/10.1126/science.1114920 .
Demichelis R, Raiteri P, Gale J D, Quigley D, Gebauer D . Nat Commun , 2011 . 2 590 DOI:10.1038/ncomms1604http://doi.org/10.1038/ncomms1604 .
Andersson M P, Dobberschutz S, Sand K K, Tobler D J, De Yoreo J J, Stipp S L . Angew Chem Int Ed , 2016 . 55 ( 37 ): 11086 - 11090 . DOI:10.1002/anie.201604357http://doi.org/10.1002/anie.201604357 .
tenWolde P R, Frenkel D . Science , 1997 . 277 ( 5334 ): 1975 - 1978 . DOI:10.1126/science.277.5334.1975http://doi.org/10.1126/science.277.5334.1975 .
Wallace A F, Hedges L O, Fernandez-Martinez A, Raiteri P, Gale J D, Waychunas G A, Whitelam S, Banfield J F, de Yoreo J J . Science , 2013 . 341 ( 6148 ): 885 - 889 . DOI:10.1126/science.1230915http://doi.org/10.1126/science.1230915 .
Smeets P J M, Finney A R, Habraken W, Nudelman F, Friedrich H, Laven J, De Yoreo J J, Rodger P M, Sommerdijk N . Proc Natl Acad Sci USA , 2017 . 114 ( 38 ): E7882 - E7890 . DOI:10.1073/pnas.1700342114http://doi.org/10.1073/pnas.1700342114 .
Zhu J H, Huang L, Cui M F, Ma L, Cao F B . Eur J Inorg Chem , 2015 . 10 1819 - 1826 . DOI:10.1002/ejic.201403153http://doi.org/10.1002/ejic.201403153 .
Yao S, Lin X, Xu Y, Chen Y, Qiu P, Shao C, Jin B, Mu Z, Sommerdijk N, Tang R . Adv Sci , 2019 . 6 ( 19 ): 1900683 DOI:10.1002/advs.201900683http://doi.org/10.1002/advs.201900683 .
Shao C, Zhao R, Jiang S, Yao S, Wu Z, Jin B, Yang Y, Pan H, Tang R . Adv Mater , 2018 . 30 ( 8 ): 1704876 DOI:10.1002/adma.201704876http://doi.org/10.1002/adma.201704876 .
Yifei X, Tijssen K C H, Bomans P H H, Anat A, Heiner F, Kentgens A P M, Sommerdijk N A J M . Nat Commun , 2018 . 9 2582 - 2593 . DOI:10.1038/s41467-018-05006-whttp://doi.org/10.1038/s41467-018-05006-w .
Alarcon C D L H, Pennadam S, Alexander C . Chem Soc Rev , 2005 . 34 ( 3 ): 276 - 285 . DOI:10.1039/B406727Dhttp://doi.org/10.1039/B406727D .
Yan X, Wang F, Zheng B, Huang F . Chem Soc Rev , 2012 . 41 ( 18 ): 6042 - 6065 . DOI:10.1039/c2cs35091bhttp://doi.org/10.1039/c2cs35091b .
Xu Jiangfei(徐江飞), Zhang Xi(张希) . Acta Polymerica Sinica(高分子学报) , 2017 . ( 1 ): 37 - 49 . DOI:10.11777/j.issn1000-3304.2017.16262http://doi.org/10.11777/j.issn1000-3304.2017.16262 .
Stuart M A, Huck W T, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S . Nat Mater , 2010 . 9 ( 2 ): 101 - 113 . DOI:10.1038/nmat2614http://doi.org/10.1038/nmat2614 .
Carsten B, He F, Son H J, Xu T, Yu L . Chem Rev , 2011 . 111 ( 3 ): 1493 - 1528 . DOI:10.1021/cr100320whttp://doi.org/10.1021/cr100320w .
Ishizone T, Goseki R. Cationic Addition Polymerization (Fundamental). Berlin: Springer, 2015. 1−22
Kamber N E, Jeong W, Waymouth R M, Pratt R C, Lohmeijer B G, Hedrick J L . Chem Rev , 2007 . 107 ( 12 ): 5813 - 5840 . DOI:10.1021/cr068415bhttp://doi.org/10.1021/cr068415b .
Pan Zuren(潘祖仁). Polymer Chemistry, 3rd ed. (高分子化学(第三版)). Beijing(北京): Chemical Industry Press(化学工业出版社), 2003. 3−8
Hu Gengxiang(胡赓祥), Cai Xu(蔡珣), Rong Yonghua(戎咏华). Fundamentals of Materials Science, 3rd ed. (材料科学基础(第三版)). Shanghai(上海): Shanghai Jiao Tong University Press(上海交通大学出版社), 2010. 7−11
Rothemund S, Teasdale I . Chem Soc Rev , 2016 . 45 ( 19 ): 5200 - 5215 . DOI:10.1039/C6CS00340Khttp://doi.org/10.1039/C6CS00340K .
Mathias L J, Carothers T W . J Am Chem Soc , 1991 . 113 ( 10 ): 4043 - 4044 . DOI:10.1021/ja00010a084http://doi.org/10.1021/ja00010a084 .
Teo B K, Sun X H . Chem Rev , 2007 . 107 ( 5 ): 1454 - 1532 . DOI:10.1021/cr030187nhttp://doi.org/10.1021/cr030187n .
Mataki H, Yamaki S, Fujiki T, Kawasaki S, Tanabe N, Okayama H, Nakajima H . Jpn J Appl Phys , 2004 . 43 ( 8b ): 5857 - 5861 . DOI:10.1143/JJAP.43.5857http://doi.org/10.1143/JJAP.43.5857 .
Bai H Q, Huang C, Jun L, Li H B . J Wuhan Univ Technol Mat Sci Edit , 2017 . 32 229 - 236 . DOI:10.1007/s11595-017-1585-yhttp://doi.org/10.1007/s11595-017-1585-y .
Hanada S, Miyamoto M, Hirai N, Yang L Q, Ohki Y . High Volt , 2017 . 2 ( 2 ): 92 - 101 . DOI:10.1049/hve.2017.0009http://doi.org/10.1049/hve.2017.0009 .
Fang W, Zeng X, Lai X, Li H, Xie C, Chen W, Zhang Y . IEEE T Dielect El In , 2016 . 23 ( 6 ): 3668 - 3675 . DOI:10.1109/TDEI.2016.005829http://doi.org/10.1109/TDEI.2016.005829 .
Tian L, Jin E, Mei H R, Ke Q P, Li Z Y, Kui H L . J Bionic Eng , 2017 . 14 ( 1 ): 130 - 140 . DOI:10.1016/S1672-6529(16)60384-0http://doi.org/10.1016/S1672-6529(16)60384-0 .
Greef T F A D, Meijer E W . Nature , 2008 . 453 ( 7192 ): 171 - 173 . DOI:10.1038/453171ahttp://doi.org/10.1038/453171a .
Watson J D, Crick F H . Nature , 1953 . 171 ( 4356 ): 737 - 738 . DOI:10.1038/171737a0http://doi.org/10.1038/171737a0 .
Fouquey C, Lehn J M, Levelut A M . Adv Mater , 1990 . 2 ( 5 ): 254 - 257 . DOI:10.1002/adma.19900020506http://doi.org/10.1002/adma.19900020506 .
Huang Feihe(黄飞鹤). Supramolecular Polymers(超分子聚合物). Hangzhou(杭州): Zhejiang University Press(浙江大学出版社), 2012. 128−162
Jonkheijm P, van der Schoot P, Schenning A P, Meijer E W . Science , 2006 . 313 ( 5783 ): 80 - 83 . DOI:10.1126/science.1127884http://doi.org/10.1126/science.1127884 .
Ashton P R, Parsons I W, Raymo F M, Stoddart J F, White A J P, Williams D J, Wolf R . Angew Chem Int Ed , 1998 . 37 ( 13-14 ): 1913 - 1916 . DOI:10.1002/(SICI)1521-3773(19980803)37:13/14<1913::AID-ANIE1913>3.0.CO;2-Whttp://doi.org/10.1002/(SICI)1521-3773(19980803)37:13/14<1913::AID-ANIE1913>3.0.CO;2-W .
Ashton P R, Baxter I, Cantrill S J, Fyfe M C T, Glink P T, Stoddart J F, White A J P, Williams D J . Angew Chem Int Ed , 1998 . 37 ( 9 ): 1294 - 1297 . DOI:10.1002/(SICI)1521-3773(19980518)37:9<1294::AID-ANIE1294>3.0.CO;2-Fhttp://doi.org/10.1002/(SICI)1521-3773(19980518)37:9<1294::AID-ANIE1294>3.0.CO;2-F .
Miyauchi M, Harada A . J Am Chem Soc , 2004 . 126 ( 37 ): 11418 - 11419 . DOI:10.1021/ja046562qhttp://doi.org/10.1021/ja046562q .
Aida T, Meijer E W, Stupp S I . Science , 2012 . 335 ( 6070 ): 813 - 817 . DOI:10.1126/science.1205962http://doi.org/10.1126/science.1205962 .
Liu Y, Yang H, Wang Z, Zhang X . Chem-Asian J , 2013 . 8 ( 8 ): 1626 - 1632 . DOI:10.1002/asia.201300151http://doi.org/10.1002/asia.201300151 .
Zhang Z, Luo Y, Chen J, Dong S, Yu Y, Ma Z, Huang F . Angew Chem Int Ed , 2011 . 50 ( 6 ): 1397 - 1401 . DOI:10.1002/anie.201006693http://doi.org/10.1002/anie.201006693 .
Xu J F, Chen Y Z, Wu D, Wu L Z, Tung C H, Yang Q Z . Angew Chem Int Ed , 2013 . 52 ( 37 ): 9738 - 9742 . DOI:10.1002/anie.201303496http://doi.org/10.1002/anie.201303496 .
Huang Z, Yang L, Liu Y, Wang Z, Scherman O A, Zhang X . Angew Chem Int Ed , 2014 . 53 ( 21 ): 5351 - 5355 . DOI:10.1002/anie.201402817http://doi.org/10.1002/anie.201402817 .
Song Q, Li F, Yang L L, Wang Z Q, Zhang X . Polym Chem-UK , 2015 . 6 ( 3 ): 369 - 372 . DOI:10.1039/C4PY01303Dhttp://doi.org/10.1039/C4PY01303D .
Qin B, Zhang S, Song Q, Huang Z, Xu J F, Zhang X . Angew Chem Int Ed , 2017 . 56 ( 26 ): 7639 - 7643 . DOI:10.1002/anie.201703572http://doi.org/10.1002/anie.201703572 .
Yin Z, Song G, Jiao Y, Zheng P, Xu JF, Zhang X . CCS Chem , 2019 . 1 335 - 42 . DOI:10.31635/ccschem.019.20190013http://doi.org/10.31635/ccschem.019.20190013 .
Kang J, Miyajima D, Mori T, Inoue Y, Itoh Y, Aida T . Science , 2015 . 347 ( 6222 ): 646 - 651 . DOI:10.1126/science.aaa4249http://doi.org/10.1126/science.aaa4249 .
Qin B, Yin Z H, Tang X Y, Zhang S, Wu Y H, Xu J F, Zhang X . Prog Polym Sci , 2020 . 100 101167 - 101184 . DOI:10.1016/j.progpolymsci.2019.101167http://doi.org/10.1016/j.progpolymsci.2019.101167 .
Palmer L C, Newcomb C J, Kaltz S R, Spoerke E D, Stupp S I . Chem Rev , 2008 . 108 ( 11 ): 4754 - 4783 . DOI:10.1021/cr8004422http://doi.org/10.1021/cr8004422 .
Xie R Q, Feng Z D, Li S W, Xu B B . Cryst Growth Des , 2011 . 11 ( 12 ): 5206 - 5214 . DOI:10.1021/cg101708yhttp://doi.org/10.1021/cg101708y .
Li L, Mao C, Wang J, Xu X, Pan H, Deng Y, Gu X, Tang R . Adv Mater , 2011 . 23 ( 40 ): 4695 - 4701 . DOI:10.1002/adma.201102773http://doi.org/10.1002/adma.201102773 .
Mass T, Giuffre A J, Sun C Y, Stifler C A, Frazier M J, Neder M, Tamura N, Stan C V, Marcus M A, Gilbert P . Proc Natl Acad Sci USA , 2017 . 114 ( 37 ): E7670 - E7678 . DOI:10.1073/pnas.1707890114http://doi.org/10.1073/pnas.1707890114 .
DeVol R T, Sun C Y, Marcus M A, Coppersmith S N, Myneni S C, Gilbert P U . J Am Chem Soc , 2015 . 137 ( 41 ): 13325 - 13333 . DOI:10.1021/jacs.5b07931http://doi.org/10.1021/jacs.5b07931 .
Mahamid J, Sharir A, Addadi L, Weiner S . Proc Natl Acad Sci USA , 2008 . 105 ( 35 ): 12748 - 12753 . DOI:10.1073/pnas.0803354105http://doi.org/10.1073/pnas.0803354105 .
Li L, Pan H H, Tao J H, Xu X R, Mao C Y, Gu X H, Tang R K . J Mater Chem , 2008 . 18 ( 34 ): 4079 - 4084 . DOI:10.1039/b806090hhttp://doi.org/10.1039/b806090h .
Liu Z, Zhang Z, Wang Z, Jin B, Li D, Tao J, Tang R, De Yoreo J J . P Natl Acad Sci USA , 2020 . 117 ( 7 ): 3397 - 3404 . DOI:10.1073/pnas.1914813117http://doi.org/10.1073/pnas.1914813117 .
Nanci A. Ten Cate’s Oral Histology: Development, Structure, and Function. St. Louis: Elsevier, 2003. 122−164.
Mukherjee K, Ruan Q, Nutt S, Tao J, de Yoreo J J, Moradian-Oldak J . ACS Omega , 2018 . 3 ( 3 ): 2546 - 2557 . DOI:10.1021/acsomega.7b02004http://doi.org/10.1021/acsomega.7b02004 .
Cao Y, Mei M L, Li Q L, Lo E C, Chu C H . ACS Appl Mater Interfaces , 2014 . 6 ( 1 ): 410 - 420 . DOI:10.1021/am4044823http://doi.org/10.1021/am4044823 .
Yamagishi K, Onuma K, Suzuki T, Okada F, Tagami J, Otsuki M, Senawangse P . Nature , 2005 . 433 ( 7028 ): 819 DOI:10.1038/433819ahttp://doi.org/10.1038/433819a .
Shao C, Jin B, Mu Z, Lu H, Zhao Y, Wu Z, Yan L, Zhang Z, Zhou Y, Pan H, Liu Z, Tang R . Sci Adv , 2019 . 5 ( 8 ): eaaw9569 DOI:10.1126/sciadv.aaw9569http://doi.org/10.1126/sciadv.aaw9569 .
Stupp S I, Braun P V . Science , 1997 . 277 ( 5330 ): 1242 - 1248 . DOI:10.1126/science.277.5330.1242http://doi.org/10.1126/science.277.5330.1242 .
Taloni A, Vodret M, Costantini G, Zapperi S . Nat Rev Mater , 2018 . 3 ( 7 ): 211 - 224 . DOI:10.1038/s41578-018-0029-4http://doi.org/10.1038/s41578-018-0029-4 .
Zou H, Wu S, Shen J . Chem Rev , 2008 . 108 ( 9 ): 3893 - 3957 . DOI:10.1021/cr068035qhttp://doi.org/10.1021/cr068035q .
Yu Y, Mu Z, Jin B, Liu Z, Tang R . Angew Chem Int Ed , 2020 . 59 ( 5 ): 2071 - 2075 . DOI:10.1002/anie.201913828http://doi.org/10.1002/anie.201913828 .
Gosline J M, Denny M W, Demont M E . Nature , 1984 . 309 ( 5968 ): 551 - 552 . DOI:10.1038/309551a0http://doi.org/10.1038/309551a0 .
Huang W, Ebrahimi D, Dinjaski N, Tarakanova A, Buehler M J, Wong J Y, Kaplan D L . Acc Chem Res , 2017 . 50 ( 4 ): 866 - 876 . DOI:10.1021/acs.accounts.6b00616http://doi.org/10.1021/acs.accounts.6b00616 .
Su I, Buehler M J . Nat Mater , 2016 . 15 ( 10 ): 1054 - 1055 . DOI:10.1038/nmat4721http://doi.org/10.1038/nmat4721 .
Yu Y, He Y, Mu Z, Zhao Y, Kong K, Liu Z, Tang R . Adv Funct Mater , 2019 . 30 ( 6 ): 1908556 - 1908565.
Yu Y, Kong K, Mu Z, Liu Z, Tang R . ACS Appl Mater Interfaces , 2020 . 12 ( 32 ): 36731 - 36739 . DOI:10.1021/acsami.0c09212http://doi.org/10.1021/acsami.0c09212 .
Yu Y, Kong K, Mu Z, Zhao Y, Liu Z, Tang R . ACS Appl Mater Interfaces , 2020 . 12 ( 48 ): 54212 - 54221 . DOI:10.1021/acsami.0c18242http://doi.org/10.1021/acsami.0c18242 .
0
浏览量
102
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构