浏览全部资源
扫码关注微信
1.兰州交通大学,研究院,兰州 730070
2.兰州交通大学,化学与生物工程学院,兰州 730070
E-mail: henaipu@mail.lzjtu.cn
纸质出版日期:2021-09-20,
网络出版日期:2021-08-20,
收稿日期:2021-02-02,
修回日期:2021-02-21,
扫 描 看 全 文
李禹红,乔瑶雨,李超等.ZIF-8@PDMAPMA复合材料的构筑及其性能研究[J].高分子学报,2021,52(09):1174-1183.
Li Yu-hong,Qiao Yao-yu,Li Chao,et al.Fabrication and Properties of ZIF-8@PDMAPMA Composite Materials[J].ACTA POLYMERICA SINICA,2021,52(09):1174-1183.
李禹红,乔瑶雨,李超等.ZIF-8@PDMAPMA复合材料的构筑及其性能研究[J].高分子学报,2021,52(09):1174-1183. DOI: 10.11777/j.issn1000-3304.2021.21041.
Li Yu-hong,Qiao Yao-yu,Li Chao,et al.Fabrication and Properties of ZIF-8@PDMAPMA Composite Materials[J].ACTA POLYMERICA SINICA,2021,52(09):1174-1183. DOI: 10.11777/j.issn1000-3304.2021.21041.
采用分步法(路线I)和一步法(路线II和路线III)分别合成了金属有机框架(MOFs)/高分子复合材料(ZIF-8@PDMAPMA),并采用粉末X射线衍射(PXRD)、傅里叶变换红外光谱(FTIR)、 扫描电子显微镜(SEM)、透射电子显微镜(TEM)和热重分析(TGA)等对其进行了表征. ZIF-8@PDMAPMA复合材料由高分子柔性链包覆ZIF-8晶体颗粒形成核壳纳米颗粒,探讨了不同合成方法对其形貌的影响. ZIF-8@PDMAPMA纳米颗粒呈球状或类似ZIF-8晶体形状轮廓. 反应体系中单体、有机配体以及反应过程中形成的高分子链均具有乳化作用,实现了对复合纳米材料粒径及其分布的有效控制,粒径仅50 nm,且分布均一. 高分子柔性链对MOFs晶体颗粒的有效包裹导致ZIF-8@PDMAPMA对N
2
吸附能力减弱. ZIF-8@PDMAPMA亲水性明显增强,从而使其在水中的分散性和稳定性得到明显改善,且粒径分布均一. 同时,实现了ZIF-8@PDMAPMA对苯扎氯铵的有效负载和可控释放,最大负载量达到0.05 g/g,且释放率达到82% . 动力学模拟结果显示,复合材料内部的ZIF-8的孔隙和表面的高分子柔性链对苯扎氯铵具有多层吸附行为. 高分子柔性链与刚性MOFs晶体有效结合,极大地改善了MOFs在水相中的稳定性,并将进一步拓宽其应用范围和领域.
MOFs/polymers composite materials (ZIF-8@PDMAPMA) were fabricated by step method (Route I) or one pot method (Route Ⅱ and Route Ⅲ)
and characterized by PXRD
FTIR
SEM
TEM and TGA. ZIF-8@PDMAPMA composite materials were core-shell nanoparticles in which ZIF-8 crystal particles were coated by flexible polymer chains. The effects of synthesis methods on the morphology of ZIF-8@PDMAPMA nanoparticles were explored. The shape of nanoparticles was spherical or similar to ZIF-8 crystal profile. The size and distribution of the nanoparticles were controlled by emulsification of monomers
organic ligands and polymer chains in the process of nanoparticles formation
and its size was 50 nm with regular distribution. Additionally
the effective encapsulation of MOFs crystal particles by polymer flexible chains led to the decrease of N
2
adsorption capacity of ZIF-8@PDMAPMA nanoparticles. However
the hydrophilicity of ZIF-8@PDMAPMA nanoparticles was remarkably enhanced
and it had good dispersibility and excellent stability with uniform size distribution of particles in water. Moreover
benzalkonium chloride was loaded and then controlled release by ZIF-8@PDMAPMA nanoparticles in the aqueous with the maximum loading of 0.05 g/g and the release rate of 82%. The results of adsorption kinetic models showed that the multilayer adsorption behavior of the nanoparticles for benzalkonium chloride had occurred in the pores of ZIF-8 in the internal and the flexible polymer chains on the surface of the nanoparticles presented. Finally
it can be expected that the combination of flexible polymer chains and rigid MOFs crystals will greatly improve the stability of MOFs in aqueous phase
and broaden its applications.
金属有机框架高分子复合物核壳纳米颗粒浸润性能药物缓释
MOFsPolymer compositeNanoparticles with core-shell structureWettabilityControlled release
Zhou H C, Long J R, Yaghi O M. Chem Rev, 2012, 112: 673-674. doi:10.1021/cr300014xhttp://dx.doi.org/10.1021/cr300014x
Farrusseng D, Aguado S, Pinel C. Angew Chem Int Ed, 2009, 48: 7502-7513. doi:10.1002/anie.200806063http://dx.doi.org/10.1002/anie.200806063
Lin J B, Xue W, Zhang J P. Chem Commun, 2011, 47: 926-928. doi:10.1039/c0cc04089dhttp://dx.doi.org/10.1039/c0cc04089d
Sumida K, Rogow D L, Mason J A. Chem Rev, 2011, 112: 724-781. doi:10.1021/cr2003272http://dx.doi.org/10.1021/cr2003272
Zhang Jiawei(张佳玮), Ma Zhiyuan(马志远), Zhao Chuanzhuang(赵传壮), Yuan Jinying(袁金颖), Zhu Xiaoxia(朱晓夏). Acta Polymerica Sinica(高分子学报), 2018, (7): 864-877. doi:10.11777/j.issn1000-3304.2018.18023http://dx.doi.org/10.11777/j.issn1000-3304.2018.18023
Timon-Yarza S, Mielcarek A, Couvreur P, Serre C. Adv Mater, 2018, 30: 1707365. doi:10.1002/adma.201707365http://dx.doi.org/10.1002/adma.201707365
Wang S Z, McGuirk C M, d’Aquino A, Mason J A, Mirkin C A. Adv Mater, 2018, 30: 1800202. doi:10.1002/adma.201800202http://dx.doi.org/10.1002/adma.201800202
Chen W, Wu C S. Dalton Trans, 2018, 47: 2114-2133. doi:10.1039/c7dt04116khttp://dx.doi.org/10.1039/c7dt04116k
Wuttke S, Lismont M, Escudero A, Rungtaweevoranit B, Parak W J. Biomaterials, 2017, 123: 172-183. doi:10.1016/j.biomaterials.2017.01.025http://dx.doi.org/10.1016/j.biomaterials.2017.01.025
Jin F, Liu J, Chen Y, Zhang Z. Angew Chem Int Ed, 2020, 60: 14222-14235. doi:10.1002/anie.202011213http://dx.doi.org/10.1002/anie.202011213
Xiao S L, Gao R N, Lu Y, Li J, Sun, Q F. Carbohyd Polym, 2015, 119: 206-208. doi:10.1016/j.carbpol.2014.11.041http://dx.doi.org/10.1016/j.carbpol.2014.11.041
Liu Jingjing(刘晶晶), XuYuxi(徐宇曦). Acta Polymerica Sinica(高分子学报), 2019, 50(3): 219-232. doi:10.11777/j.issn1000-3304.2018.18222http://dx.doi.org/10.11777/j.issn1000-3304.2018.18222
Lee H C, Heil T, Sun J K, Bernhard V K, Schmidt J. Mater Horiz, 2019, 6: 802-809. doi:10.1039/c8mh01342jhttp://dx.doi.org/10.1039/c8mh01342j
Zheng M, Liu S, Guan X G, Xie Z G. ACS Appl Mater Interfaces, 2015, 7: 22181-22187. doi:10.1021/acsami.5b04315http://dx.doi.org/10.1021/acsami.5b04315
Yin Y Q, Gao C L, Xiao Q, Lin G, Lin Z, Cai Z W, Yang H H. ACS Appl Mater Interfaces, 2016, 8: 29052-29061. doi:10.1021/acsami.6b09893http://dx.doi.org/10.1021/acsami.6b09893
Zhou W Q, Wang L, Li F, Zhang W N, Huang W, Huo F W, Xu H P. Adv Funct Mater, 2017, 27:1605465. doi:10.1002/adfm.201605465http://dx.doi.org/10.1002/adfm.201605465
Andreas Z, Nader A D, Benjamin S, Jasmin K, Miriam H, Tobias B, Patrick H, Waldemar S, Hanna E, Ernst W, Matthias B, Don C L, Ulrich L, Stefan W. ACS Nano, 2019, 13: 3884-3895. doi:10.1021/acsnano.8b06287http://dx.doi.org/10.1021/acsnano.8b06287
Mckinlay A C, Morris R E, Horcajada P. Angew Chem, 2010, 49(36): 6260-6266. doi:10.1002/anie.201000048http://dx.doi.org/10.1002/anie.201000048
Hoop M, Walde C F, Riccò R. Appl Mater Today, 2018, 11: 13-21. doi:10.1016/j.apmt.2017.12.014http://dx.doi.org/10.1016/j.apmt.2017.12.014
Liu Yun(刘芸), Chen Jierong(陈杰瑢). Polymer Bulletin(高分子通报), 2006, (3): 42-45. doi:10.3969/j.issn.1003-3726.2006.03.007http://dx.doi.org/10.3969/j.issn.1003-3726.2006.03.007
Yan L, Che X, Wang Z, Zhang X, Zhu X, Zhou M, Chen W, Huang L, Ro V A L, Yu P K N. ACS Appl Mater Interfaces, 2017, 9(38): 32990-33000. doi:10.1021/acsami.7b10064http://dx.doi.org/10.1021/acsami.7b10064
Schmidt B V. Macromol Rapid Commun, 2020, 41(1): 1900333. doi:10.1002/marc.201900333http://dx.doi.org/10.1002/marc.201900333
Sun W Z, Zhai X S, Zhao L. Chem Eng J, 2016, 289: 59-64. doi:10.1016/j.cej.2015.12.076http://dx.doi.org/10.1016/j.cej.2015.12.076
Stock N, Biswas S. Chem Rev, 2012, 112: 933-969. doi:10.1021/cr200304ehttp://dx.doi.org/10.1021/cr200304e
Huve J, Ryzhikov A, Nouali N, Lalia V, AugÈ G, Daou T J. RSC Adv, 2018, 8: 29248-29273. doi:10.1039/c8ra04775hhttp://dx.doi.org/10.1039/c8ra04775h
He M, Yao J, Liu Q, Wang K, Chen F, Wang H. Microporous Mesoporous Mater, 2014, 184: 55-60. doi:10.1016/j.micromeso.2013.10.003http://dx.doi.org/10.1016/j.micromeso.2013.10.003
He N P, Chen X N, Wen J, Cao Q, Li Y H, Wang L. ACS Omega, 2019, 4: 21018-21026. doi:10.1021/acsomega.9b02325http://dx.doi.org/10.1021/acsomega.9b02325
Ganguli A K, Ganguly A, Vaidya S. Chem Soc Rev, 2010, 39(2): 474-485. doi:10.1039/b814613fhttp://dx.doi.org/10.1039/b814613f
Zarur A J, Ying J Y. Nature, 2000, 403(6765): 65-67. doi:10.1038/47450http://dx.doi.org/10.1038/47450
Pan Y C, Liu Y Y, Zeng G F, Zhao L, Lai Z P. Chem Commun, 2011, 47: 2071-2073. doi:10.1039/c0cc05002dhttp://dx.doi.org/10.1039/c0cc05002d
Daniel S, Manal A, Moustafa R, Mazen A G, Mohamad H. J Am Chem Soc, 2018, 140: 1812-1823. doi:10.1021/jacs.7b11589http://dx.doi.org/10.1021/jacs.7b11589
Neufeld M J, Lutzke A, Tapia J B, Reynolds M M. ACS Appl Mater Interfaces, 2017, 9(6): 5139-5148. doi:10.1021/acsami.6b14937http://dx.doi.org/10.1021/acsami.6b14937
Giles C H, Dsilva A P, Easton I A. J Colloid Interf Sci, 1974, 47(3): 766-778. doi:10.1016/0021-9797(74)90253-7http://dx.doi.org/10.1016/0021-9797(74)90253-7
Gao Jinlong(高金龙), Jia Yunting(贾云婷), Gu Na(谷娜), Zhao Kuolin(赵扩林), Wang Kuitao(王奎涛), Zhang Bingzhu(张炳烛). Journal of Molecular Science(分子科学学报), 2018, 34: 324-330. doi:10.13563/j.cnki.jmolsci.2018.04.011http://dx.doi.org/10.13563/j.cnki.jmolsci.2018.04.011
0
浏览量
64
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构