浏览全部资源
扫码关注微信
清华大学化学工程系 北京 100084
E-mail: ltyan@mail.tsinghua.edu.cn
纸质出版日期:2021-09-20,
网络出版日期:2021-06-24,
收稿日期:2021-02-08,
修回日期:2021-03-02,
扫 描 看 全 文
戴晓彬,张轩钰,高丽娟等.强熵效应与大分子体系的熵调控[J].高分子学报,2021,52(09):1076-1099.
Dai Xiao-bin,Zhang Xuan-yu,Gao Li-juan,et al.Superentropy Effect and Macromolecular Entropy Control Strategy[J].ACTA POLYMERICA SINICA,2021,52(09):1076-1099.
戴晓彬,张轩钰,高丽娟等.强熵效应与大分子体系的熵调控[J].高分子学报,2021,52(09):1076-1099. DOI: 10.11777/j.issn1000-3304.2021.21044.
Dai Xiao-bin,Zhang Xuan-yu,Gao Li-juan,et al.Superentropy Effect and Macromolecular Entropy Control Strategy[J].ACTA POLYMERICA SINICA,2021,52(09):1076-1099. DOI: 10.11777/j.issn1000-3304.2021.21044.
在大分子体系中,以链的构象熵为主的熵效应对体系的微观结构和宏观性能都起着至关重要的作用. 然而,熵的统计本质使其远不像焓作用那么直观,甚至会导致反直觉的现象出现. 因此,探寻大分子体系中的熵效应,对于深入揭示此类体系纷繁复杂现象背后物理机制的重要性来说是不言而喻的,已成为高分子与软凝聚态物理学以及生命科学等多学科相交叉的重要前沿研究领域. 如何在阐释熵效应的独特作用规律基础上,有效地调控熵以实现对体系微观结构的熵调控进而发展新型功能体系,是该领域一个亟需解决的重要科学问题. 本文总结了我们在提出并发展熵调控策略方面的研究进展. 首先,剖析了熵效应的一些基本作用规律,涵盖熵致有序和熵力等,并进一步提出了强熵效应的概念. 其次,阐述了熵调控策略的必要性、基本原理以及调控途径. 同时,举例介绍了熵调控策略在大分子体系中的应用,涵盖高分子纳米复合体系、凝胶网络、生命大分子体系以及大分子胶体体系等. 最后,简明扼要地展望了该领域的未来发展趋势以及面临的关键问题,以期为其以后的发展提供些许有益的启迪.
Entropy
one of the elementary parameters in thermodynamics
is a central concept in statistical mechanics. In macromolecular systems
entropic effects
predominantly from the conformational entropy of a chain
play an essential role in both microstructural organization and macroscopic properties. In striking contrast to enthalpic interactions
entropic effects seem to be elusive and even lead to counterintuitive performance due to the statistical nature of entropy. Thus
exploring the entropic effects in macromolecular systems is of significant importance in elucidating the physical origin behind many complex phenomena
and has become one of the most important directions in the interdisciplinary fields covering polymer physics and soft matter physics. One particular aspect lies in how to manipulate entropic effects to tune the structural organization and thereby develop new functional systems
based on a fundamental understanding of the rules governing the ectopic effects. Here
we summarize our recent progress in proposing and developing entropic strategy in the structural control of macromolecular systems. Firstly
we elucidate the unique rules of the entropic effects
including entropic ordering and entropic forces
and propose the concept of superentropic effect. The significance
principles
and approaches regarding the entropic strategy are then described. Some applications of entropic strategy in various macromolecular systems
such as polymer nanocomposites
polymer gel networks
and biological macromolecules
are also presented. We finally seek to discuss future directions and identify open problems regarding the future progress of the entropic strategy. We hope that this article will promote further efforts toward fundamental research and the wide applications of entropic strategy in elucidating physical mechanisms
developing new types of functional materials
and beyond.
熵调控强熵效应高分子链构象统计熵力软凝聚态物理
Entropic strategySuperentropic effectConformation statistics of polymer chainEntropic forceSoft matter physics
Clausius R. Annalen der Physik, 1865, 201(7): 353-400. doi:10.1002/andp.18652010702http://dx.doi.org/10.1002/andp.18652010702
Cao Zexian(曹则贤). Physics(物理), 2009, 38(9): 675-680. doi:10.3321/j.issn:0379-4148.2009.11.001http://dx.doi.org/10.3321/j.issn:0379-4148.2009.11.001
Boltzmann L. Vorlesungen über Gastheorie. Leipzig: Johann Ambrosius Barth, 1896. doi:10.1017/cbo9781139381444.022http://dx.doi.org/10.1017/cbo9781139381444.022
Shannon C E. Bell Syst Tech J, 1948, 27(3): 379-423. doi:10.1002/j.1538-7305.1948.tb01338.xhttp://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
Onsager L. Ann NY Acad Sci, 1949, 51(4): 627-659. doi:10.1111/j.1749-6632.1949.tb27296.xhttp://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x
Feng Duan(冯端), Feng Shaotong(冯少彤). The World of Entropy(熵的世界). Beijing(北京): Science Press(科学出版社), 2009. doi:10.3724/sp.j.1005.2009.00001http://dx.doi.org/10.3724/sp.j.1005.2009.00001
de Gennes P G. Rev Mod Phys, 1992, 64(3): 645-648. doi:10.1103/revmodphys.64.645http://dx.doi.org/10.1103/revmodphys.64.645
Frenkel D. Phys A, 1999, 263(1-4): 26-38. doi:10.1016/s0378-4371(98)00501-9http://dx.doi.org/10.1016/s0378-4371(98)00501-9
Frenkel D. Nat Mater 2015, 14(1): 9-12. doi:10.1038/nmat4178http://dx.doi.org/10.1038/nmat4178
Zhu G, Huang Z, Xu Z, Yan L T. Acc Chem Res, 2018, 51(4): 900-909. doi:10.1021/acs.accounts.8b00001http://dx.doi.org/10.1021/acs.accounts.8b00001
Chiappini M, Drwenski T, van Roij R, Dijkstra M. Phys Rev Lett, 2019, 123(6): 068001. doi:10.1103/physrevlett.123.068001http://dx.doi.org/10.1103/physrevlett.123.068001
Fernández-Rico C, Chiappini M, Yanagishima T, de Sousa H, Aarts D G, Dijkstra M. Science, 2020, 369(6506): 950-955. doi:10.1126/science.abb4536http://dx.doi.org/10.1126/science.abb4536
Dussi S, Dijkstra M. Nat Comm, 2016, 7(1): 1-10. doi:10.1038/ncomms11175http://dx.doi.org/10.1038/ncomms11175
De Nijs B, Dussi S, Smallenburg F, Meeldijk J D, Groenendijk D J, Filion L, Dijkstra M. Nat Mater, 2015, 14(1): 56-60. doi:10.1038/nmat4072http://dx.doi.org/10.1038/nmat4072
Jin W, Chan H K, Zhong Z. Phys Rev Lett, 2020, 124(24): 248002. doi:10.1103/physrevlett.124.248002http://dx.doi.org/10.1103/physrevlett.124.248002
Belli S, Patti A, Dijkstra M, van Roij R. Phys Rev Lett, 2011, 107(14): 148303. doi:10.1103/physrevlett.107.148303http://dx.doi.org/10.1103/physrevlett.107.148303
Wang D, Dasgupta T, van der Wee E B, Zanaga D, Altantzis T, Wu Y, Coli G M, Murray C B, Bals S, Dijkstra M, van Blaaderen A. Nat Phys, 2021, 17(1): 128-134. doi:10.1038/s41567-020-1003-9http://dx.doi.org/10.1038/s41567-020-1003-9
van Anders G, Klotsa D, Ahmed N K, Engel M, Glotzer S C. Proc Natl Acad Sci, 2014, 111(45): 4812-4821. doi:10.1073/pnas.1418159111http://dx.doi.org/10.1073/pnas.1418159111
Damasceno P F, Engel M, Glotzer S C. ACS Nano, 2012, 6(1): 609-614. doi:10.1021/nn204012yhttp://dx.doi.org/10.1021/nn204012y
Zhu G, Xu Z, Yan L T. Nano Lett, 2020, 20(8): 5616-5624. doi:10.1021/acs.nanolett.0c02635http://dx.doi.org/10.1021/acs.nanolett.0c02635
Mao X, Chen Q, Granick S. Nat Mater, 2013, 12(3): 217-222. doi:10.1038/nmat3496http://dx.doi.org/10.1038/nmat3496
Manoharan V N. Science, 2015, 349(6251): 1253751. doi:10.1126/science.1253751http://dx.doi.org/10.1126/science.1253751
Frederick K K, Marlow M S, Valentine K G, Wand A J. Nature, 2007, 448(7151): 325-329. doi:10.1038/nature05959http://dx.doi.org/10.1038/nature05959
Wang Z G. Macromolecules, 2017, 50(23): 9073-9114. doi:10.1021/acs.macromol.7b01518http://dx.doi.org/10.1021/acs.macromol.7b01518
Ye Xiaodong(叶晓东), Zhou Kejin(周科进), Wu Chi(吴奇). Acta Polymerica Sinica(高分子学报), 2017, (9): 1389-1399. doi:10.11777/j.issn1000-3304.2017.16362http://dx.doi.org/10.11777/j.issn1000-3304.2017.16362
Kuhn W. Kolloid Z, 1934, 68(1): 2-15. doi:10.1007/bf01451681http://dx.doi.org/10.1007/bf01451681
Yang Yuliang(杨玉良), Zhang Hongdong(张红东). Acta Polymerica Sinica(高分子学报), 2020, 51(1): 87-90. doi:10.11777/j.issn1000-3304.2020.19162http://dx.doi.org/10.11777/j.issn1000-3304.2020.19162
Hu W. Phys Rep, 2018, 747: 1-50. doi:10.1016/j.physrep.2018.04.004http://dx.doi.org/10.1016/j.physrep.2018.04.004
Zeno W F, Thatte A S, Wang L, Snead W T, Lafer E M, Stachowiak J C. J Am Chem Soc, 2019, 141(26): 10361-10371. doi:10.1021/jacs.9b03927http://dx.doi.org/10.1021/jacs.9b03927
Kim Y H, Leriche G, Diraviyam K, Koyanagi T, Gao K, Onofrei D, Patterson J, Guha A, Gianneschi N, Holland G P, Gilson M K, Mayer M, Sept D, Yang J. Sci Adv, 2019, 5(5): eaaw4783. doi:10.1126/sciadv.aaw4783http://dx.doi.org/10.1126/sciadv.aaw4783
Chen D, Jiang M. Acc Chem Res, 2005, 38(6): 494-502. doi:10.1021/ar040113dhttp://dx.doi.org/10.1021/ar040113d
Sun T, Feng L, Gao X, Jiang L. Acc Chem Res, 2005, 38(8): 644-652. doi:10.1021/ar040224chttp://dx.doi.org/10.1021/ar040224c
Wang C, Wang Z, Zhang X. Acc Chem Res, 2012, 45(4): 608-618. doi:10.1021/ar200226dhttp://dx.doi.org/10.1021/ar200226d
Kirkwood J E. In: Smoluchowski R, Mayer J E, Weyl W A, eds. Phase Transformations in Solids. New York: John Wiley & Sons, 1951. 1-37. doi:10.1126/science.115.2997.634http://dx.doi.org/10.1126/science.115.2997.634
Sandberg P A. Nature, 1983, 305(5929): 19-22. doi:10.1038/305019a0http://dx.doi.org/10.1038/305019a0
Percus J K. The Many-Body Problem. New York: John Wiley & Sons, 1963. 511-522
Georgi H, Glashow S L. Phys Rev Lett, 1974, 32(8): 438. doi:10.1103/physrevlett.32.438http://dx.doi.org/10.1103/physrevlett.32.438
Yang C N, Mills R L. Phys Rev, 1954, 96(1): 191. doi:10.1103/physrev.96.191http://dx.doi.org/10.1103/physrev.96.191
Voet D, Voet J G, Pratt C W. Fundamentals of Biochemistry. New York: John Wiley & Sons, 2001
Asakura S, Oosawa F. J Chem Phys, 1954, 22(7): 1255-1256. doi:10.1063/1.1740347http://dx.doi.org/10.1063/1.1740347
de Gennes P G. Adv Colloid Interface Sci, 1987, 27(3-4): 189-209. doi:10.1016/0001-8686(87)85003-0http://dx.doi.org/10.1016/0001-8686(87)85003-0
Damasceno P F, Engel M, Glotzer S C. Science, 2012, 337(6093): 453-457. doi:10.1126/science.1220869http://dx.doi.org/10.1126/science.1220869
Ball P. Nat Mater, 2014, 13(12): 1083-1083. doi:10.1038/nmat4142http://dx.doi.org/10.1038/nmat4142
Lekkerkerker H N W, Tuinier R. Colloids and the Depletion Interaction. Dordrecht: Springer, 2011. doi:10.1007/978-94-007-1223-2_2http://dx.doi.org/10.1007/978-94-007-1223-2_2
Dimopoulos S, Susskind L. Phys Rev D, 1978, 18(12): 4500-4509. doi:10.1103/physrevd.18.4500http://dx.doi.org/10.1103/physrevd.18.4500
Zheng Zhigang(郑志刚). Emergent Dynamics of Complex Systems: From Synchronization to Collective Transport (复杂系统的涌现动力学: 从同步到集体输运). Beijing(北京): Science Press(科学出版社), 2019
Dai X, Hou C, Xu Z, Yang Y, Zhu G, Chen P, Huang Z H, Yan L T. Entropy, 2019, 21(2): 186. doi:10.3390/e21020186http://dx.doi.org/10.3390/e21020186
Zhang Y. High-Entropy Materials: A Brief Introduction. Berlin: Springer, 2019. doi:10.1007/978-981-13-8526-1_2http://dx.doi.org/10.1007/978-981-13-8526-1_2
Thompson R B, Ginzburg V V, Matsen M W, Balazs A C. Science, 2001, 292(5526): 2469-2472. doi:10.1126/science.1060585http://dx.doi.org/10.1126/science.1060585
Wilson K G, Kogut J. Phys Rep, 1974, 12(2): 75-199. doi:10.1016/0370-1573(74)90023-4http://dx.doi.org/10.1016/0370-1573(74)90023-4
Martiniani S, Chaikin P M, Levine D. Phys Rev X, 2019, 9(1): 011031. doi:10.1103/physrevx.9.011031http://dx.doi.org/10.1103/physrevx.9.011031
Curk T, Martinez-Veracoechea F J, Frenkel D, Dobnikar J. Nano Lett, 2014, 14(5): 2617-2622. doi:10.1021/nl500449xhttp://dx.doi.org/10.1021/nl500449x
Zhang R, Lee B, Stafford C M, Douglas J F, Dobrynin A V, Bockstaller M R. Proc Natl Acad Sci, 2017, 114(10): 2462-2467. doi:10.1073/pnas.1613828114http://dx.doi.org/10.1073/pnas.1613828114
Wojtecki R J, Meador M A, Rowan S J. Nat Mater, 2011, 10(1): 14-27. doi:10.1038/nmat2891http://dx.doi.org/10.1038/nmat2891
Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961, 19(1-2): 35-50. doi:10.1016/0022-3697(61)90054-3http://dx.doi.org/10.1016/0022-3697(61)90054-3
Shin K, Xiang H, Moon S I, Kim T, McCarthy T J, Russell T P. Science, 2004, 306(5693): 76. doi:10.1126/science.1100090http://dx.doi.org/10.1126/science.1100090
Yu B, Sun P, Chen T, Jin Q, Ding D, Li B, Shi A C. Phys Rev Lett, 2006, 96(13): 138306. doi:10.1103/physrevlett.96.138306http://dx.doi.org/10.1103/physrevlett.96.138306
Yu P Q, Yan L T, Chen N, Xie X M. Polymer, 2012, 53(21): 4727-4736. doi:10.1016/j.polymer.2012.08.038http://dx.doi.org/10.1016/j.polymer.2012.08.038
Engel M, Damasceno P F, Phillips C L, Glotzer S C. Nat Mater, 2015, 14(1): 109-116. doi:10.1038/nmat4152http://dx.doi.org/10.1038/nmat4152
Bernal J D, Mason J. Nature, 1960, 188(4754): 910-911. doi:10.1038/188910a0http://dx.doi.org/10.1038/188910a0
Dai X, Chen P, Zhu G, Xu Z, Zhang X, Yan L T. J Phys Chem Lett, 2019, 10(24): 7970-7979. doi:10.1021/acs.jpclett.9b03253http://dx.doi.org/10.1021/acs.jpclett.9b03253
Liu Z, Guo R, Xu G, Huang Z, Yan L T. Nano Lett, 2014, 14(12): 6910-6916. doi:10.1021/nl5029396http://dx.doi.org/10.1021/nl5029396
Balazs A C, Epstein I R. Science, 2009, 325(5948): 1632-1634. doi:10.1126/science.1178323http://dx.doi.org/10.1126/science.1178323
Kou B, Cao Y, Li J, Xia C, Li Z, Dong H, Zhang A, Zhang J, Kob W, Wang Y. Nature, 2017, 551(7680): 360-363. doi:10.1038/nature24062http://dx.doi.org/10.1038/nature24062
Li Rusheng(李如生). Nonequilibrium Thermodynamics and Dissipative Structure(非平衡态热力学和耗散结构). Beijing(北京): Tsinghua University Press(清华大学出版社), 1986. 1-407. doi:10.3866/pku.whxb19860508http://dx.doi.org/10.3866/pku.whxb19860508
He X, Aizenberg M, Kuksenok O, Zarzar L D., Shastri A, Balazs A C, Aizenberg J. Nature, 2012, 487(7406): 214-218. doi:10.1038/nature11223http://dx.doi.org/10.1038/nature11223
Hudson J L, Mankin J C. J Chem Phys, 1981, 74(11): 6171-6177. doi:10.1063/1.441007http://dx.doi.org/10.1063/1.441007
Nowak A P, Breedveld V, Pakstis L, Ozbas B, Pine D J, Pochan D, Deming T J. Nature, 2002, 417(6887): 424-428. doi:10.1038/417424ahttp://dx.doi.org/10.1038/417424a
Huang Z, Lu C, Dong B, Xu G, Ji C, Zhao K, Yan L T. Nanoscale, 2016, 8(2): 1024-1032. doi:10.1039/c5nr06134bhttp://dx.doi.org/10.1039/c5nr06134b
Xu G, Huang Z, Chen P, Cui T, Zhang X, Miao B, Yan L T. Small, 2017, 13(13): 1603155. doi:10.1002/smll.201603155http://dx.doi.org/10.1002/smll.201603155
Madsen J J, Grime J M A, Rossman J S, Voth G A. Proc Natl Acad Sci, 2018, 115(37): 8595-8603. doi:10.1073/pnas.1805443115http://dx.doi.org/10.1073/pnas.1805443115
Shevchenko E V, Talapin D V, Murray C B, O’Brien S. J Am Chem Soc, 2006, 128(11): 3620-3637. doi:10.1021/ja0564261http://dx.doi.org/10.1021/ja0564261
Fortini A, Martín-Fabiani I, de La Haye J L, Dugas P, Lansalot M, D’Agosto F, Bourgeat-Lami E, Keddie J L, Sear R P. Phys Rev Lett, 2016, 116(11): 118301. doi:10.1103/physrevlett.116.118301http://dx.doi.org/10.1103/physrevlett.116.118301
Kraft D J, Ni R, Smallenburg F, Hermes M, Yoon K, Weitz D A, Blaaderen A, Groenewold J, Dijkstra M, Kegel W K. Proc Natl Acad Sci, 2012, 109(27): 10787-10792. doi:10.1073/pnas.1116820109http://dx.doi.org/10.1073/pnas.1116820109
Balazs A C, Emrick T, Russell T P. Science, 2006, 314(5802): 1107-1110. doi:10.1126/science.1130557http://dx.doi.org/10.1126/science.1130557
Yan L T, Xie X M. Prog Polym Sci, 2013, 38(2): 369-405. doi:10.1016/j.progpolymsci.2012.05.001http://dx.doi.org/10.1016/j.progpolymsci.2012.05.001
Dong B, Huang Z, Chen H, Yan L T. Macromolecules, 2015, 48(15): 5385-5393. doi:10.1021/acs.macromol.5b01290http://dx.doi.org/10.1021/acs.macromol.5b01290
Dong B, Guo R, Yan L T. Macromolecules, 2014, 47(13): 4369-4379. doi:10.1021/ma500161jhttp://dx.doi.org/10.1021/ma500161j
Li W, Dong B, Yan L T. Macromolecules, 2013, 46(18): 7465-7476. doi:10.1021/ma4009884http://dx.doi.org/10.1021/ma4009884
Chen P, Yang Y, Dong B, Huang Z, Zhu G, Cao Y, Yan L T. Macromolecules, 2017, 50(5): 2078-2091. doi:10.1021/acs.macromol.7b00012http://dx.doi.org/10.1021/acs.macromol.7b00012
Yang Y, Chen P, Cao Y, Cao Y, Huang Z, Zhu G, Xu Z, Dai X, Chen S, Miao B, Yan L T. Langmuir, 2018, 34(32): 9477-9488. doi:10.1021/acs.langmuir.8b01378http://dx.doi.org/10.1021/acs.langmuir.8b01378
Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat Mater, 2013, 12(10): 932-937. doi:10.1038/nmat3713http://dx.doi.org/10.1038/nmat3713
Lieleg O, Ribbeck K. Trends Cell Biol, 2011, 21(9): 543-551. doi:10.1016/j.tcb.2011.06.002http://dx.doi.org/10.1016/j.tcb.2011.06.002
Wälde S, Kehlenbach R H. Trends Cell Biol, 2010, 20(8): 461-469. doi:10.1016/j.tcb.2010.05.001http://dx.doi.org/10.1016/j.tcb.2010.05.001
Cai L H, Panyukov S, Rubinstein M. Macromolecules, 2015, 48(3): 847-862. doi:10.1021/ma501608xhttp://dx.doi.org/10.1021/ma501608x
Xu Z, Dai X, Bu X, Yang Y, Zhang X, Man X, Zhang X, Doi M, Yan L T. ACS Nano, 2021, 15(3): 4608-4616. doi:10.1021/acsnano.0c08877http://dx.doi.org/10.1021/acsnano.0c08877
Everaers R, Bundschuh R, Kremer K. Europhys Lett, 1995, 29(3): 263. doi:10.1209/0295-5075/29/3/013http://dx.doi.org/10.1209/0295-5075/29/3/013
Callan-Jones A, Sorre B, Bassereau P. CSH Perspect Biol, 2011, 3(2): a004648. doi:10.1101/cshperspect.a004648http://dx.doi.org/10.1101/cshperspect.a004648
Falahati H, Haji-Akbari A. Soft Matter, 2019, 15(6): 1135-1154. doi:10.1039/c8sm02285bhttp://dx.doi.org/10.1039/c8sm02285b
Broedersz C P, MacKintosh F C. Rev Mod Phys, 2014, 86(3): 995-1036. doi:10.1103/revmodphys.86.995http://dx.doi.org/10.1103/revmodphys.86.995
Macfarlane R J, Lee B, Jones M R, Harris N, Schatz G C, Mirkin C A. Science, 2011, 334(6053): 204-208. doi:10.1126/science.1210493http://dx.doi.org/10.1126/science.1210493
Zhu G, Xu Z, Yang Y, Dai X, Yan L T. ACS Nano, 2018, 12(9): 9467-9475. doi:10.1021/acsnano.8b04753http://dx.doi.org/10.1021/acsnano.8b04753
Thaner R V, Kim Y, Li T I N G, Macfarlane R J, Nguyen S T, Olvera de la Cruz. Nano Lett, 2015, 15(8): 5545-5551. doi:10.1021/acs.nanolett.5b02129http://dx.doi.org/10.1021/acs.nanolett.5b02129
Xu Z, Zhu G, Chen P, Dai X, Yan L T. Nanoscale, 2019, 11(46): 22305-22315. doi:10.1039/c9nr07337jhttp://dx.doi.org/10.1039/c9nr07337j
Xu Z, Yang Y, Zhu G, Chen P, Huang Z, Dai X, Hou C, Yan L T. Adv Theo Simul, 2019, 2(2): 1800160. doi:10.1002/adts.201800160http://dx.doi.org/10.1002/adts.201800160
Hou X S, Zhu G L, Ren L J, Huang Z H, Zhang R B, Ungar G, Yan L T, Wang W. J Am Chem Soc, 2018, 140(5): 1805-1811. doi:10.1021/jacs.7b11324http://dx.doi.org/10.1021/jacs.7b11324
Huang Z, Zhu G, Chen P, Hou C, Yan L T. Phys Rev Lett, 2019, 122(19): 198002. doi:10.1103/physrevlett.122.198002http://dx.doi.org/10.1103/physrevlett.122.198002
Ma C, Wu H, Huang Z H, Guo R H, Hu M B, Kübel C, Yan L T, Wang W. Angew Chem Int Ed, 2015, 54(52): 15699-15704. doi:10.1002/anie.201507237http://dx.doi.org/10.1002/anie.201507237
Huang Zihan(黄子涵), Dong Bojun(董伯骏), Chen Pengyu(陈鹏宇), Yang Ye(杨烨), Zhu Guolong(朱国龙), Yan Litang(燕立唐). Acta Polymerica Sinica(高分子学报), 2016, (8): 979-991. doi:10.11777/j.issn1000-3304.2016.16055http://dx.doi.org/10.11777/j.issn1000-3304.2016.16055
Guo R, Liu Z, Xie X M, Yan L T. J Phys Chem Lett, 2013, 4(8): 1221-1226. doi:10.1021/jz4003789http://dx.doi.org/10.1021/jz4003789
Chen P, Xu Z, Zhu G, Dai X, Yan L T. Phys Rev Lett, 2020, 124(19): 198102. doi:10.1103/physrevlett.124.198102http://dx.doi.org/10.1103/physrevlett.124.198102
Rezvantalab H, Beltran-Villegas D J, Larson R G. Phys Rev Lett, 2016, 117(12): 128001. doi:10.1103/physrevlett.117.128001http://dx.doi.org/10.1103/physrevlett.117.128001
0
浏览量
331
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构