浏览全部资源
扫码关注微信
清华大学化学系 北京 100084
[ "许华平,男,1978年生. 清华大学化学系教授. 2001和2006年分别在吉林大学化学学院获得学士和博士学位,导师为张希院士. 2004年4月~2005年3月,在比利时鲁汶大学交流学习1年. 2006年8月~2008年7月在荷兰Twente大学从事博士后研究. 2008年7月在清华大学化学系工作,2014年起为清华大学化学系教授. 2014年获国家自然科学基金委“杰出青年科学基金”资助. 2017年起担任美国化学会《ACS Biomaterials Science & Engineering》副主编. 任北京市化学会副秘书长、中国化学会化学教育学科委员会副主任委员、青年工作者委员会委员. 主要研究方向为含硒高分子." ]
纸质出版日期:2021-08-20,
网络出版日期:2021-05-24,
收稿日期:2021-02-26,
修回日期:2021-03-12,
扫 描 看 全 文
潘烁炯,许华平.活性氧响应含碲高分子[J].高分子学报,2021,52(08):857-866.
Pan Shuo-jiong,Hua-ping Xu.ROS-responsive Tellurium-containing Polymers[J].ACTA POLYMERICA SINICA,2021,52(08):857-866.
潘烁炯,许华平.活性氧响应含碲高分子[J].高分子学报,2021,52(08):857-866. DOI: 10.11777/j.issn1000-3304.2021.21058.
Pan Shuo-jiong,Hua-ping Xu.ROS-responsive Tellurium-containing Polymers[J].ACTA POLYMERICA SINICA,2021,52(08):857-866. DOI: 10.11777/j.issn1000-3304.2021.21058.
刺激响应性高分子是指在周围物理或者化学环境发生较小改变时,其结构和性质可以发生响应性改变的一类高分子. 我们课题组近年来系统地研究了一系列具有活性氧(ROS)响应性的含碲高分子以及其在药物递送领域中的应用. 本文从碲元素和硒元素的氧化响应性差异出发,探究了碲醚结构对活性氧灵敏的响应性. 随后研究了含碲高分子在药物递送领域,特别是在递送铂类药物中的应用,例如:主链含碲高分子可以同时包载顺铂和吲哚菁绿实现癌症化疗和光动力治疗的结合,侧链含碲/铂高分子可以实现癌症化疗和放疗的结合. 此外,碲/铂组装体还可以通过活性氧和配位双重响应,实现药物的可控释放.
Stimuli-responsive polymers are defined as polymers whose structure and properties can be changed in response to minor changes in the surrounding physical or chemical environment and have become increasingly attractive as biomaterials. Reactive oxygen species (ROS) are a series of chemically reactive oxygen-containing molecules
which play an indispensable physiological role in cell signal transduction
acting as secondary messengers. It has been suggested that ROS levels in the cancer cells are much higher than those in the normal cells
and thus
ROS have been selected as a starting point or target for cancer therapy. Tellurium belongs to the chalcogen along with sulfur and selenium. Compared to sulfur and selenium
the relatively large atomic size and low electronegativity of tellurium give it many unique properties
such as redox sensitivity and coordination ability. In recent years
our research group pioneered in the research of ROS-responsive tellurium-containing polymers and their application in drug delivery. The work presented in this feature article
starting from the difference of oxidation responsiveness of tellurium and selenium
explored the ultra-sensitive ROS-response of tellurides. Then we studied the application of tellurium-containing polymers in drug delivery
focusing on the delivery of platinum drugs. For example
polymers with tellurium in the main chain can simultaneously deliver Cisplatin and indocyanine green to achieve a combination of cancer chemotherapy and photodynamic therapy
while side-chain tellurium/platinum-containing polymer can realize a combination of cancer chemotherapy and radiotherapy. Besides
the tellurium/platinum assembly can achieve controlled drug release through a dual response mechanism of ROS and coordination. Finally
we put forward the prospect of the development of tellurium-containing polymers
such as the development of controllable synthesis of tellurium-containing polymers based on chain polymerization
the development of tellurium-containing polymers and tellurium/platinum-containing assembly with different topological structures
and the exploration of the long-term toxicity of tellurium-containing molecules in biological applications.
碲活性氧响应配位响应药物递送
TelluriumROS responseCoordination responseDrug delivery
de Las Heras Alarcon C, Pennadam S, Alexander C. Chem Soc Rev, 2005, 34(3): 276-285. doi:10.1039/b406727dhttp://dx.doi.org/10.1039/b406727d
Roy D, Cambre J N, Sumerlin B S. Prog Polym Sci, 2010, 35(1-2): 278-301. doi:10.1016/j.progpolymsci.2009.10.008http://dx.doi.org/10.1016/j.progpolymsci.2009.10.008
Stuart M A, Huck W T, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat Mater, 2010, 9(2): 101-113. doi:10.1038/nmat2614http://dx.doi.org/10.1038/nmat2614
Davis D A, Hamilton A, Yang J, Cremar L D, van Gough D, Potisek S L, Ong M T, Braun P V, Martinez T J, White S R, Moore J S, Sottos N R. Nature, 2009, 459(7243): 68-72. doi:10.1038/nature07970http://dx.doi.org/10.1038/nature07970
Kim H, Jeong S M, Park J W. J Am Chem Soc, 2011, 133(14): 5206-5209. doi:10.1021/ja200297jhttp://dx.doi.org/10.1021/ja200297j
Xia J, Zhao P, Zheng K, Lu C, Yin S, Xu H. Angew Chem Int Ed, 2019, 58(2): 542-546. doi:10.1002/anie.201810588http://dx.doi.org/10.1002/anie.201810588
Liu C, Fan Z, Tan Y, Fan F, Xu H. Adv Mater, 2020, 32(12): e1907569. doi:10.1002/adma.201907569http://dx.doi.org/10.1002/adma.201907569
Zhao W, Gu J, Zhang L, Chen H, Shi J. J Am Chem Soc, 2005, 127(25): 8916-8917. doi:10.1021/ja051113rhttp://dx.doi.org/10.1021/ja051113r
Wu M, Chen W, Chen Y, Zhang H, Liu C, Deng Z, Sheng Z, Chen J, Liu X, Yan F, Zheng H. Adv Sci, 2018, 5(4): 1700474. doi:10.1002/advs.201700474http://dx.doi.org/10.1002/advs.201700474
Huo S, Zhao P, Shi Z, Zou M, Yang X, Warszawik E, Loznik M, Gostl R, Herrmann A. Nat Chem, 2021, 13(2): 131-139. doi:10.1038/s41557-020-00624-8http://dx.doi.org/10.1038/s41557-020-00624-8
Xiao Z, Ji C, Shi J, Pridgen E M, Frieder J, Wu J, Farokhzad O C. Angew Chem Int Ed, 2012, 51(47): 11853-11857. doi:10.1002/anie.201204018http://dx.doi.org/10.1002/anie.201204018
Liu J, Bu W, Pan L, Shi J. Angew Chem Int Ed, 2013, 52(16): 4375-4379. doi:10.1002/anie.201300183http://dx.doi.org/10.1002/anie.201300183
Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, Chen M, Yang K, Lu G, Jiang L, Liu Z. Biomaterials, 2016, 97: 1-9. doi:10.1016/j.biomaterials.2016.04.034http://dx.doi.org/10.1016/j.biomaterials.2016.04.034
Lu K, He C, Guo N, Chan C, Ni K, Lan G, Tang H, Pelizzari C, Fu Y, Spiotto, M T, Weichselbaum R R, Lin W. Nat Biomed Eng, 2018, 2(8): 600-610. doi:10.1038/s41551-018-0203-4http://dx.doi.org/10.1038/s41551-018-0203-4
Lu Y, Aimetti A A, Langer R, Gu Z. Nat Rev Mater, 2017, 2: 16075. doi:10.1038/natrevmats.2016.75http://dx.doi.org/10.1038/natrevmats.2016.75
Lyssiotis C A, Kimmelman A C. Trends Cell Biol, 2017, 27(11): 863-875. doi:10.1016/j.tcb.2017.06.003http://dx.doi.org/10.1016/j.tcb.2017.06.003
Zhu Y, Shi J, Shen W, Dong X, Feng J, Ruan M, Li Y. Angew Chem Int Ed, 2005, 44(32): 5083-5087. doi:10.1002/anie.200501500http://dx.doi.org/10.1002/anie.200501500
Jin Y, Song L, Su Y, Zhu L, Pang Y, Qiu F, Tong G, Yan D, Zhu B, Zhu X. Biomacromolecules, 2011, 12(10): 3460-3468. doi:10.1021/bm200956uhttp://dx.doi.org/10.1021/bm200956u
Ahmed M, Narain R. Mol Pharm, 2012, 9(11): 3160-3170. doi:10.1021/mp300255phttp://dx.doi.org/10.1021/mp300255p
Du Y, Chen W, Zheng M, Meng F, Zhong Z. Biomaterials, 2012, 33(29): 7291-7299. doi:10.1016/j.biomaterials.2012.06.034http://dx.doi.org/10.1016/j.biomaterials.2012.06.034
Zhu S, Lansakara P D, Li X, Cui Z. Bioconjugate Chem, 2012, 23(5): 966-980. doi:10.1021/bc2005945http://dx.doi.org/10.1021/bc2005945
Bernardos A, Aznar E, Marcos M D, Martinez-Manez R, Sancenon F, Soto J, Barat J M, Amoros P. Angew Chem Int Ed, 2009, 48(32): 5884-5887. doi:10.1002/anie.200900880http://dx.doi.org/10.1002/anie.200900880
Bernardos A, Mondragon L, Aznar E, Marcos M D, Martinez-Manez R, Sancenon F, Soto J, Barat J M, Perez-Paya E, Guillem C, Amoros P. ACS Nano, 2010, 4(11): 6353-6368. doi:10.1021/nn101499dhttp://dx.doi.org/10.1021/nn101499d
Biswas A, Joo K I, Liu J, Zhao M, Fan G, Wang P, Gu Z, Tang Y. ACS Nano, 2011, 5(2): 1385-1394. doi:10.1021/nn1031005http://dx.doi.org/10.1021/nn1031005
Zhu L, Kate P, Torchilin V P. ACS Nano, 2012, 6(4): 3491-3498. doi:10.1021/nn300524fhttp://dx.doi.org/10.1021/nn300524f
Ong W, Yang Y, Cruciano A C, McCarley R L. J Am Chem Soc, 2008, 130(44): 14739-14744. doi:10.1021/ja8050469http://dx.doi.org/10.1021/ja8050469
Ma N, Li Y, Xu H, Wang Z, Zhang X. J Am Chem Soc, 2010, 132(2): 442-443. doi:10.1021/ja908124ghttp://dx.doi.org/10.1021/ja908124g
Sun Y, Yan X, Yuan T, Liang J, Fan Y, Gu Z, Zhang X. Biomaterials, 2010, 31(27): 7124-7131. doi:10.1016/j.biomaterials.2010.06.011http://dx.doi.org/10.1016/j.biomaterials.2010.06.011
Wilson D S, Dalmasso G, Wang L, Sitaraman S V, Merlin D, Murthy N. Nat Mater, 2010, 9(11): 923-928. doi:10.1038/nmat2859http://dx.doi.org/10.1038/nmat2859
Wu M, Meng Q, Chen Y, Zhang L, Li M, Cai X, Li Y, Yu P, Zhang L, Shi J. Adv Mater, 2016, 28(10): 1963-1969. doi:10.1002/adma.201505524http://dx.doi.org/10.1002/adma.201505524
Kildahl N K. J Chem Educ, 1995, 72(5): 423-424. doi:10.1021/ed072p423http://dx.doi.org/10.1021/ed072p423
Wang L, Cao W, Xu H. ChemNanoMat, 2016, 2(6): 479-488. doi:10.1002/cnma.201600076http://dx.doi.org/10.1002/cnma.201600076
Li T, Xu H. Cell Rep Phys Sci, 2020, 1(7): 100111. doi:10.1016/j.xcrp.2020.100111http://dx.doi.org/10.1016/j.xcrp.2020.100111
Sun C, Tan Y, Xu H. ACS Mater Lett, 2020, 2(9): 1173-1177. doi:10.1021/acsmaterialslett.0c00272http://dx.doi.org/10.1021/acsmaterialslett.0c00272
R-iSugimoto, Yoshino K, Inoue S, Tsukagoshi K. Jpn J Appl Phys, 1985, 24(Part 2, No. 6): L425-L427
Kalechman Y, Gafter U, Gal R, Rushkin G, Yan D, Albeck M, Sredni B. J Immunol, 2002, 169(1): 384-392. doi:10.4049/jimmunol.169.1.384http://dx.doi.org/10.4049/jimmunol.169.1.384
Xu H, Wang Y, Wang Z, Liu J, Mario S, Wim D. Chinese Science Bulletin, 2006, 51(19): 2315-2321. doi:10.1007/s11434-006-2107-zhttp://dx.doi.org/10.1007/s11434-006-2107-z
Wang L, Wang W, Cao W, Xu H. Polym Chem, 2017, 8(31): 4520-4527. doi:10.1039/c7py00971bhttp://dx.doi.org/10.1039/c7py00971b
Cao W, Gu Y, Li T, Xu H. Chem Commun, 2015, 51(32): 7069-7071. doi:10.1039/c5cc01779chttp://dx.doi.org/10.1039/c5cc01779c
Gao S, Li T, Guo Y, Sun C, Xianyu B, Xu H. Adv Mater, 2020, 32(12): e1907568. doi:10.1002/adma.201907568http://dx.doi.org/10.1002/adma.201907568
Li T, Pan S, Gao S, Xiang W, Sun C, Cao W, Xu H. Angew Chem Int Ed, 2020, 59(7): 2700-2704. doi:10.1002/anie.201914453http://dx.doi.org/10.1002/anie.201914453
Wang L, Fan F, Cao W, Xu H. ACS Appl Mater Interfaces, 2015, 7(29): 16054-16060. doi:10.1021/acsami.5b04419http://dx.doi.org/10.1021/acsami.5b04419
Fang R, Xu H, Cao W, Yang L, Zhang X. Polym Chem, 2015, 6(15): 2817-2821. doi:10.1039/c5py00050ehttp://dx.doi.org/10.1039/c5py00050e
Li T, Smet M, Dehaen W, Xu H. ACS Appl Mater Interfaces, 2016, 8(6): 3609-3614. doi:10.1021/acsami.5b07877http://dx.doi.org/10.1021/acsami.5b07877
Li F, Li T, Han X, Zhuang H, Nie G, Xu H. ACS Biomater Sci Eng, 2018, 4(6): 1954-1962. doi:10.1021/acsbiomaterials.7b00362http://dx.doi.org/10.1021/acsbiomaterials.7b00362
Li T, Xiang W, Li F, Xu H. Biomaterials, 2018, 157: 17-25. doi:10.1016/j.biomaterials.2017.12.001http://dx.doi.org/10.1016/j.biomaterials.2017.12.001
Cao W, Li F, Chen R, Xu H. RSC Adv, 2016, 6(96): 94033-94037. doi:10.1039/c6ra19768jhttp://dx.doi.org/10.1039/c6ra19768j
Li F, Li T, Cao W, Wang L, Xu H. Biomaterials, 2017, 133: 208-218. doi:10.1016/j.biomaterials.2017.04.032http://dx.doi.org/10.1016/j.biomaterials.2017.04.032
Fan F, Wang L, Li F, Fu Y, Xu H. ACS Appl Mater Interfaces, 2016, 8(26): 17004-17010. doi:10.1021/acsami.6b04998http://dx.doi.org/10.1021/acsami.6b04998
Fan F, Gao S, Ji S, Fu Y, Zhang P, Xu H. Mater Chem Front, 2018, 2(11): 2109-2115. doi:10.1039/c8qm00321ahttp://dx.doi.org/10.1039/c8qm00321a
Lin Y, Wu Y, Wang R, Tao G, Luo P, Lin X, Huang G, Li J, Yang H. Chem Commun, 2018, 54(62): 8579-8582. doi:10.1039/c8cc04653khttp://dx.doi.org/10.1039/c8cc04653k
Cao W, Gu Y, Meineck M, Li T, Xu H. J Am Chem Soc, 2014, 136(13): 5132-5137. doi:10.1021/ja500939mhttp://dx.doi.org/10.1021/ja500939m
Cao W, Wang L, Xu H. Chem Commun, 2015, 51(25): 5520-5522. doi:10.1039/c4cc08588dhttp://dx.doi.org/10.1039/c4cc08588d
Liu C, Xia J, Ji S, Fan Z, Xu H. Chem Commun, 2019, 55(19): 2813-2816. doi:10.1039/c9cc00252ahttp://dx.doi.org/10.1039/c9cc00252a
Xia Jiahao(夏嘉豪), Li Hongbin(李宏斌), Xu Huaping(许华平). Acta Polymerica Sinica(高分子学报), 2020, 51(2): 205-213. doi:10.11777/j.issn1000-3304.2020.20134http://dx.doi.org/10.11777/j.issn1000-3304.2020.20134
Pan S, Yang J, Ji S, Li T, Gao S, Sun C, Xu H. CCS Chem, 2020, 2(3): 225-235. doi:10.31635/ccschem.020.202000124http://dx.doi.org/10.31635/ccschem.020.202000124
Xia Jiahao(夏嘉豪), Tan Yizheng(谭以正), Xu Huaping(许华平). Acta Polymerica Sinica(高分子学报), 2020, 51(11): 1190-1200. doi:10.11777/j.issn1000-3304.2020.20134http://dx.doi.org/10.11777/j.issn1000-3304.2020.20134
Xiang W, Li Z, Xu C Q, Li J, Zhang W, Xu H. Chem Asian J, 2019, 14(9): 1481-1486. doi:10.1002/asia.201900332http://dx.doi.org/10.1002/asia.201900332
Zhao P, Xu C, Sun C, Xia J, Sun L, Li J, Xu H. Polym Chem, 2020, 11(44): 7087-7093. doi:10.1039/d0py01201ghttp://dx.doi.org/10.1039/d0py01201g
0
浏览量
144
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构