浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200438
[ "陈国颂,女,1979年生. 1997~2006年于南开大学化学系获得学士、博士学位;2006~2009年在美国爱荷华州立大学从事博士后研究;2009~2011年复旦大学高分子科学系讲师,2011~2014年复旦大学高分子科学系副教授. 2014年至今,复旦大学高分子科学系教授. 现任中国化学会青年化学工作者委员会委员(2015至今);中国化学会高分子学科委员会委员(2018至今);《ACS Macro Letters》副主编(2018至今);中国化学会糖化学专业委员会委员(2019至今);中国生物材料学会生物医用高分子材料分会委员(2019至今);英国皇家化学会会士(2017至今). 主要从事蛋白质组装,基于糖的大分子组装体的免疫学功能,糖化学反应及超分子化学驱动的大分子组装等方面的研究." ]
纸质出版日期:2021-08-20,
网络出版日期:2021-06-30,
收稿日期:2021-03-01,
扫 描 看 全 文
张智,陈国颂,江明.诱导配体:蛋白质组装新策略[J].高分子学报,2021,52(08):867-883.
Zhang Zhi,Chen Guo-song,Jiang Ming.Inducing Ligand Strategy: A New Strategy for Protein Assembly[J].ACTA POLYMERICA SINICA,2021,52(08):867-883.
张智,陈国颂,江明.诱导配体:蛋白质组装新策略[J].高分子学报,2021,52(08):867-883. DOI: 10.11777/j.issn1000-3304.2021.21059.
Zhang Zhi,Chen Guo-song,Jiang Ming.Inducing Ligand Strategy: A New Strategy for Protein Assembly[J].ACTA POLYMERICA SINICA,2021,52(08):867-883. DOI: 10.11777/j.issn1000-3304.2021.21059.
近年来,分子自组装的研究特别关注应用复杂组装基元模拟体内复杂的生命过程. 其中,利用蛋白质作为组装基元构筑组装体的相关研究有助于进一步了解生命相关的自组装,并进一步揭示生命过程的调控机制. 然而,由于蛋白质组装基元自身的结构复杂性和构象多样性等特点,具有规则结构的人工蛋白质组装体仍然难以构建. 本文将回顾和总结本课题组近年来所提出的诱导配体蛋白质组装新策略. 首先简要叙述文献中蛋白质组装方向的研究进展,继而介绍诱导配体策略产生的背景和主要思路,重点讨论利用诱导配体策略获得的蛋白质组装体的结构、形貌及功能,最后展望该策略的发展前景.
In recent years
molecular self-assembly has been moving into employing more complex building blocks to emulate the complex life processes in nature. Among them
progress made in using proteins as the building blocks to construct assemblies could inspire us with a better understanding of the life-related self-assembly processes and ultimately endows us with the wisdom to design functional proteinaceous material comparable to nature. However
due to the intrinsic complexity and conformation variability of protein building blocks
artificial protein assemblies with well-defined structure have been hard to construct. Herein
this article reviews the inducing ligand strategy
which was a new strategy proposed by our group to construct protein assemblies with well-defined structure. We first introduce the research progress of the protein assembly in the literature. Then we discuss the discovery of the inducing ligand strategy
the structure
morphologies and functions of the various protein assemblies obtained
via
this strategy. By using this strategy
various assembled structures with precise protein packing including 1D nanofibers
2D nanosheets and 3D crystals have been developed. Among those
the most attractive one could be the helical microtubule structures obtained by using SBA and inducing ligand. Meanwhile
the possible mechanism of this protein assembly strategy has been discussed. Finally
the inducing ligand strategy is prospected.
蛋白组装自组装策略有序形貌精准调控纳米材料
Protein assemblySelf-assembly strategyOrdered morphologyPrecise controlNanomaterials
Philp D, Stoddart J F. Angew Chem Int Ed, 1996, 35(11): 1154-1196. doi:10.1002/anie.199611541http://dx.doi.org/10.1002/anie.199611541
Whitesides G M, Grzybowski B. Science, 2002, 295(5564): 2418-2421. doi:10.1126/science.1070821http://dx.doi.org/10.1126/science.1070821
Whitesides G M, Mathias J P, Seto C T. Science, 1991, 254(5036): 1312-1319. doi:10.1126/science.1962191http://dx.doi.org/10.1126/science.1962191
Service R F. Science, 2005, 309(5731): 95. doi:10.1126/science.309.5731.95http://dx.doi.org/10.1126/science.309.5731.95
Kennedy D, Norman C. Science, 2005, 309(5731): 75. doi:10.1126/science.309.5731.75http://dx.doi.org/10.1126/science.309.5731.75
Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, Zhang J, Weng T, Zhang Z, Wu Z, Cheng L, Shi D, Lu X, Lei J, Crispin M, Shi Y, Li L, Li S. Cell, 2020, 183(3): 730-738. doi:10.1016/j.cell.2020.09.018http://dx.doi.org/10.1016/j.cell.2020.09.018
Dautant A, Meyer J B, Yariv J, Sweet R, Frolow F. Acta Crystallogr Sect D: Biol Crystallogr, 1998, 54(1): 16-24. doi:10.1107/s0907444997006811http://dx.doi.org/10.1107/s0907444997006811
Li H, DeRosier D J, Nicholson W V, Nogales E, Downing K H. Structure, 2002, 10(10): 1317-1328. doi:10.1016/s0969-2126(02)00827-4http://dx.doi.org/10.1016/s0969-2126(02)00827-4
Scheuring S, Stahlberg H, Chami M, Houssin C, Rigaud J L, Engel A. Mol Microbiol, 2002, 44(3): 675-684. doi:10.1046/j.1365-2958.2002.02864.xhttp://dx.doi.org/10.1046/j.1365-2958.2002.02864.x
Walls A C, Fiala B, Schafer A, Wrenn S, Pham M N, Murphy M, Tse L V, Shehata L, O'Connor M A, Chen C, Navarro M J, Miranda M C, Pettie D, Ravichandran R, Kraft J C, Ogohara C, Palser A, Chalk S, Lee E, Guerriero K, Kepl E, Chow C M, Sydeman C, Hodge E A, Brown B, Fuller J T, Dinnon K H, Gralinski L E, Leist S R, Gully K L, Lewis T B, Guttman M, Chu H Y, Lee K K, Fuller D H, Baric R S, Kellam P, Carter L, Pepper M, Sheahan T P, Veesler D, King N P. Cell, 2020, 183(5): 1367-1382
Malay A D, Miyazaki N, Biela A, Chakraborti S, Heddle J G. Nature, 2019, 569(7756): 438-442. doi:10.1038/s41586-019-1185-4http://dx.doi.org/10.1038/s41586-019-1185-4
Yang G, Zhang X, Kochovski Z, Zhang Y, Dai B, Sakai F, Jiang L, Lu Y, Ballauff M, Li X, Liu C, Chen G, Jiang M. J Am Chem Soc, 2016, 138(6): 1932-1937. doi:10.1021/jacs.5b11733http://dx.doi.org/10.1021/jacs.5b11733
Liu R, Kochovski Z, Li L, Yin Y, Yang J, Yang G, Tao G, Xu A, Zhang E, Ding H, Lu Y, Chen G, Jiang M. Angew Chem Int Ed, 2020, 59(24): 9617-9623. doi:10.1002/anie.202000771http://dx.doi.org/10.1002/anie.202000771
Sun H, Li Y, Yu S, Liu J. Front Bioeng Biotechnol, 2020, 8(295): 1-9
Luo Q, Hou C, Bai Y, Wang R, Liu J. Chem Rev, 2016, 116(22): 13571-13632. doi:10.1021/acs.chemrev.6b00228http://dx.doi.org/10.1021/acs.chemrev.6b00228
Yang Tingting(杨婷婷), Da Xiaodi(达晓娣), Zhang Wenbin(张文彬). Acta Polymerica Sinica(高分子学报), 2020, 51(8): 804-816. doi:10.11777/j.issn1000-3304.2020.20065http://dx.doi.org/10.11777/j.issn1000-3304.2020.20065
Padilla J E, Colovos C, Yeates T O. Proc Natl Acad Sci USA, 2001, 98(5): 2217-2221. doi:10.1073/pnas.041614998http://dx.doi.org/10.1073/pnas.041614998
Lai Y, Reading E, Hura G L, Tsai K, Laganowsky A, Asturias F J, Tainer J A, Robinson C V, Yeates T O. Nat Chem, 2014, 6(12): 1065-1071. doi:10.1038/nchem.2107http://dx.doi.org/10.1038/nchem.2107
Lai Y T, Cascio D, Yeates T O. Science, 2012, 336(6085): 1129-1129. doi:10.1126/science.1219351http://dx.doi.org/10.1126/science.1219351
Laniado J, Yeates T O. Proc Natl Acad Sci USA, 2020, 117(50): 31817-31823. doi:10.1073/pnas.2015183117http://dx.doi.org/10.1073/pnas.2015183117
Das R, Baker D. Annu Rev Biochem, 2008, 77: 363-382. doi:10.1146/annurev.biochem.77.062906.171838http://dx.doi.org/10.1146/annurev.biochem.77.062906.171838
Leaver-Fay A, Tyka M, Lewis S M, Lange O F, Bradley P. Methods Enzymol, 2011, 487(11): 545-574
Leman J K, Weitzner B D, Lewis S M, Adolf-Bryfogle J, Alam N, Alford R F, Aprahamian M, Baker D, Barlow K A, Barth P, Basanta B, Bender B J, Blacklock K, Bonet J, Boyken S E, Bradley P, Bystroff C, Conway P, Cooper S, Correia B E, Coventry B, Das R, De J, Rene M, DiMaio F, Dsilva L, Dunbrack R, Ford A S, Frenz B, Fu D Y, Geniesse C, Goldschmidt L, Gowthaman R, Gray J J, Gront D, Guffy S, Horowitz S, Huang P, Huber T, Jacobs T M, Jeliazkov J R, Johnson D K, Kappel K, Karanicolas J, Khakzad H, Khar K R, Khare S D, Khatib F, Khramushin A, King I C, Kleffner R, Koepnick B, Kortemme T, Kuenze G, Kuhlman B, Kuroda D, Labonte J W, Lai J K, Lapidoth G, Leaver-Fay A, Lindert S, Linsky T, London N, Lubin J H, Lyskov S, Maguire J, Malmstroem L, Marcos E, Marcu O, Marze N A, Meiler J, Moretti R, Mulligan V K, Nerli S, Norn C, O'Conchuir S, Ollikainen N, Ovchinnikov S, Pacella M S, Pan X, Park H, Pavlovicz R E, Pethe M, Pierce B G, Pilla K B, Raveh B, Renfrew P D, Burman S R, Rubenstein A, Sauer M F, Scheck A, Schief W, Schueler-Furman O, Sedan Y, Sevy A M, Sgourakis N G, Shi L, Siegel J B, Silva D, Smith S, Song Y, Stein A, Szegedy M, Teets F D, Thyme S B, Wang R, Watkins A, Zimmerman L, Bonneau R. Nat Methods, 2020, 17(7): 665-680
King N P, Bale J B, Sheffler W, McNamara D E, Gonen S, Gonen T, Yeates T O, Baker D. Nature, 2014, 510(7503): 103-108. doi:10.1038/nature13404http://dx.doi.org/10.1038/nature13404
Bale J B, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates T O, Gonen T, King N P, Baker D. Science, 2016, 353(6297): 389-394. doi:10.1126/science.aaf8818http://dx.doi.org/10.1126/science.aaf8818
Hsia Y, Bale J B, Gonen S, Shi D, Sheffler W, Fong K K, Nattermann U, Xu C, Huang P, Ravichandran R, Yi S, Davis T N, Gonen T, King N P, Baker D. Nature, 2016, 535(7610): 136-139. doi:10.1038/nature18010http://dx.doi.org/10.1038/nature18010
Brouwer P J M, Antanasijevic A, Berndsen Z, Yasmeen A, Fiala B, Bijl T P, Bontjer I, Bale J B, Sheffler W, Allen J D, Schorcht A, Burgers J A, Camacho M, Ellis D, Cottrell C A, Behrens A, Catalano M, Del M I, Ketas T J, LaBranche C, van G M J, Sliepen K, Stewart L J, Crispin M, Montefiori D C, Baker D, Moore J P, Klasse P J, Ward A B, King N P, Sanders R W. Nat Commun, 2019, 10(1): 4272-4272
Marcandalli J, Fiala B, Ols S, Perotti M, Devander W, Snijder J, Hodge E, Benhaim M, Ravichandran R, Carter L, Sheffler W, Brunner L, Lawrenz M, Dubois P, Lanzavecchia A, Sallusto F, Lee K K, Veesler D, Correnti C E, Stewart L J, Baker D, Lore K, Perez L, King N P. Cell, 2019, 176(6): 1420-1431
Boyoglu-Barnum S, Ellis D, Gillespie R A, Hutchinson G B, Park Y, Moin S M, Acton O J, Ravichandran R, Murphy M, Pettie D, Matheson N, Carter L, Creanga A, Watson M J, Kephart S, Ataca S, Vaile J R, Ueda G, Crank M C, Stewart L, Lee K K, Guttman M, Baker D, Mascola J R, Veesler D, Graham B S, King N P, Kanekiyo M. Nature, 2021, 592: 623-628
Kanekiyo M, Ellis D, King N P. J Infect Dis, 2019, 219(Suppl_1): S88-S96. doi:10.1093/infdis/jiy745http://dx.doi.org/10.1093/infdis/jiy745
Kanekiyo M, Graham B S. CSH Perspect Med, 2020: a038448. doi:10.1101/cshperspect.a038448http://dx.doi.org/10.1101/cshperspect.a038448
Kaufmann K W, Lemmon G H, DeLuca S L, Sheehan J H, Meiler J. Biochemistry-US, 2010, 49(14): 2987-2998. doi:10.1021/bi902153ghttp://dx.doi.org/10.1021/bi902153g
Rohl C A, Strauss C E, Misura K M, Baker D. Methods Enzymol, 2004, 383: 66-93
Yang C, Sesterhenn F, Bonet J, van A A, Scheller L, Abriata L A, Cramer J T, Wen X, Rosset S, Georgeon S, Jardetzky T, Kreys T, Fussenegger M, Merkx M, Correia B E. Nat Chem Biol, 2021, 17(4): 492-500. doi:10.1038/s41589-020-00699-xhttp://dx.doi.org/10.1038/s41589-020-00699-x
Ben-Sasson A J, Watson J L, Sheffler W, Johnson M C, Bittleston A, Somasundaram L, Decarreau J, Jiao F, Chen J, Mela I, Drabek A A, Jarrett S M, Blacklow S C, Kaminski C F, Hura G L, De Yoreo J J, Kollman J M, Ruohola-Baker H, Derivery E, Baker D. Nature, 2021, 589(7842): 468-473. doi:10.1038/s41586-020-03120-8http://dx.doi.org/10.1038/s41586-020-03120-8
Zou J, Yin J, Fang L, Yang M, Zhang P. J Chem Inf Model, 2020, 60(12): 5794-5802. doi:10.1021/acs.jcim.0c00679http://dx.doi.org/10.1021/acs.jcim.0c00679
Smith S T, Meiler J. Plos One, 2020, 15(10): e0240450. doi:10.1371/journal.pone.0240450http://dx.doi.org/10.1371/journal.pone.0240450
Marcandalli J, Fiala B, Ols S, Perotti M, Devander W, Snijder J, Hodge E, Benhaim M, Ravichandran R, Carter L, Sheffler W, Brunner L, Lawrenz M, Dubois P, Lanzavecchia A, Sallusto F, Lee K K, Veesler D, Correnti C E, Stewart L J, Baker D, Lore K, Perez L, King N P. Cell, 2019, 176(6): 1420-1431. e1417
Service R F. Science, 2020, 370(6521): 1144-1145. doi:10.1126/science.370.6521.1144http://dx.doi.org/10.1126/science.370.6521.1144
Levinthal C. Mossbauer Spectroscopy in Biological Systems, 1969, 67: 22-24
Bai Y, Luo Q, Liu J. Chem Soc Rev, 2016, 45(10): 2756-2767. doi:10.1039/c6cs00004ehttp://dx.doi.org/10.1039/c6cs00004e
van Dun S, Ottmann C, Milroy L G, Brunsveld L. J Am Chem Soc, 2017, 139(40): 13960-13968. doi:10.1021/jacs.7b01979http://dx.doi.org/10.1021/jacs.7b01979
Fegan A, White B, Carlson J C T, Wagner C R. Chem Rev, 2010, 110(6): 3315-3336. doi:10.1021/cr8002888http://dx.doi.org/10.1021/cr8002888
Yang G, Wu L, Chen G, Jiang M. Chem Commun, 2016, 52(70): 10595-10605. doi:10.1039/c6cc04190fhttp://dx.doi.org/10.1039/c6cc04190f
Churchfield L A, Tezcan F A. Acc Chem Res, 2019, 52(2): 345-355. doi:10.1021/acs.accounts.8b00617http://dx.doi.org/10.1021/acs.accounts.8b00617
Salgado E N, Radford R J, Tezcan F A. Acc Chem Res, 2010, 43(5): 661-672. doi:10.1021/ar900273thttp://dx.doi.org/10.1021/ar900273t
Sontz P A, Bailey J B, Ahn S, Tezcan F A. J Am Chem Soc, 2015, 137(36): 11598-11601. doi:10.1021/jacs.5b07463http://dx.doi.org/10.1021/jacs.5b07463
Fujita D, Fujita M. ACS Central Sci, 2015, 1(7): 352-353. doi:10.1021/acscentsci.5b00315http://dx.doi.org/10.1021/acscentsci.5b00315
Bailey J B, Tezcan F A. J Am Chem Soc, 2020, 142(41): 17265-17270. doi:10.1021/jacs.0c07835http://dx.doi.org/10.1021/jacs.0c07835
Bailey J B, Zhang L, Chiong J A, Ahn S, Tezcan F A. J Am Chem Soc, 2017, 139(24): 8160-8166. doi:10.1021/jacs.7b01202http://dx.doi.org/10.1021/jacs.7b01202
Sim S, Aida T. Acc Chem Res, 2017, 50(3): 492-497. doi:10.1021/acs.accounts.6b00495http://dx.doi.org/10.1021/acs.accounts.6b00495
Biswas S, Kinbara K, Niwa T, Taguchi H, Ishii N, Watanabe S, Miyata K, Kataoka K, Aida T. Nat Chem, 2013, 5(7): 613-620. doi:10.1038/nchem.1681http://dx.doi.org/10.1038/nchem.1681
Sim S, Niwa T, Taguchi H, Aida T. J Am Chem Soc, 2016, 138(35): 11152-11155. doi:10.1021/jacs.6b07925http://dx.doi.org/10.1021/jacs.6b07925
Sim S, Miyajima D, Niwa T, Taguchi H, Aida T. J Am Chem Soc, 2015, 137(14): 4658-4661. doi:10.1021/jacs.5b02144http://dx.doi.org/10.1021/jacs.5b02144
Sun H, Zhang X, Miao L, Zhao L, Luo Q, Xu J, Liu J. ACS Nano, 2015, 10(1): 421-428
Sun H, Miao L, Li J, Fu S, An G, Si C, Dong Z, Luo Q, Yu S, Xu J, Liu J. ACS Nano, 2015, 9(5): 5461-5469. doi:10.1021/acsnano.5b01311http://dx.doi.org/10.1021/acsnano.5b01311
Miao L, Han J, Zhang H, Zhao L, Si C, Zhang X, Hou C, Luo Q, Xu J, Liu J. ACS Nano, 2014, 8(4): 3743-3751. doi:10.1021/nn500414uhttp://dx.doi.org/10.1021/nn500414u
Bai Y, Luo Q, Zhang W, Miao L, Xu J, Li H, Liu J. J Am Chem Soc, 2013, 135(30): 10966-10969. doi:10.1021/ja405519shttp://dx.doi.org/10.1021/ja405519s
Hou C, Li J, Zhao L, Zhang W, Luo Q, Dong Z, Xu J, Liu J. Angew Chem Int Ed, 2013, 52(21): 5590-5593. doi:10.1002/anie.201300692http://dx.doi.org/10.1002/anie.201300692
McMillan J R, Hayes O G, Winegar P H, Mirkin C A. Acc Chem Res, 2019, 52(7): 1939-1948. doi:10.1021/acs.accounts.9b00165http://dx.doi.org/10.1021/acs.accounts.9b00165
Stephanopoulos N. Chem-US, 2020, 6(2): 364-405. doi:10.1016/j.chempr.2020.01.012http://dx.doi.org/10.1016/j.chempr.2020.01.012
Liu R, Hudalla G A. Molecules, 2019, 24(8): 1-21. doi:10.3390/molecules24081450http://dx.doi.org/10.3390/molecules24081450
van Rijn P. Polymers-Basel, 2013, 5(2): 576-599. doi:10.3390/polym5020576http://dx.doi.org/10.3390/polym5020576
Oohora K, Onoda A, Hayashi T. Chem Commun, 2012, 48(96): 11714. doi:10.1039/c2cc36376chttp://dx.doi.org/10.1039/c2cc36376c
Oohora K, Hayashi T. Curr Opin Chem Biol, 2014, 19: 154-161. doi:10.1016/j.cbpa.2014.02.014http://dx.doi.org/10.1016/j.cbpa.2014.02.014
Kitagishi H, Oohora K, Yamaguchi H, Sato H, Matsuo T, Harada A, Hayashi T. J Am Chem Soc, 2007, 129(34): 10326-10327. doi:10.1021/ja073295qhttp://dx.doi.org/10.1021/ja073295q
Kitagishi H, Kakikura Y, Yamaguchi H, Oohora K, Harada A, Hayashi T. Angew Chem Int Ed, 2008, 121(7): 1297-1300
Oohora K, Kajihara R, Fujimaki N, Uchihashi T, Hayashi T. Chem Commun, 2019, 55(11): 1544-1547. doi:10.1039/c8cc09314hhttp://dx.doi.org/10.1039/c8cc09314h
Muller W, Ringsdorf H, Rump E, Wildburg G, Zhang X, Angermaier L, Knoll W, Liley M, Spinke J. Science, 1993, 262(5140): 1706-1708. doi:10.1126/science.8259513http://dx.doi.org/10.1126/science.8259513
Dotan N, Arad D, Frolow F, Freeman A. Angew Chem Int Ed, 1999, 38(16): 2363-2366. doi:10.1002/(sici)1521-3773(19990816)38:16<2363::aid-anie2363>3.0.co;2-dhttp://dx.doi.org/10.1002/(sici)1521-3773(19990816)38:16<2363::aid-anie2363>3.0.co;2-d
Lameignere E, Shiao T C, Roy R, Wimmerova M, Dubreuil F, Varrot A, Imberty A. Glycobiology, 2010, 20(1): 87-98. doi:10.1093/glycob/cwp151http://dx.doi.org/10.1093/glycob/cwp151
Sicard D, Cecioni S, Iazykov M, Chevolot Y, Matthews S E, Praly J, Souteyrand E, Imberty A, Vidal S, Phaner-Goutorbe M. Chem Commun, 2011, 47(33): 9483-9485. doi:10.1039/c1cc13097hhttp://dx.doi.org/10.1039/c1cc13097h
Wang J, Hang Y, Hua J. Sensor Actuat B - Chem, 2019(282): 232-242. doi:10.1016/j.snb.2018.10.091http://dx.doi.org/10.1016/j.snb.2018.10.091
Ahmad N, Gabius H, Andre S, Kaltner H, Sabesan S, Roy R, Liu B, Macaluso F, Brewer C. J Biol Chem, 2004, 279(12): 10841-10847. doi:10.1074/jbc.m312834200http://dx.doi.org/10.1074/jbc.m312834200
Wei K, Li J, Chen G, Jiang M. ACS Macro Lett, 2013, 2(3): 278-283. doi:10.1021/mz400036thttp://dx.doi.org/10.1021/mz400036t
Sakai F, Yang G, Weiss M S, Liu Y, Chen G, Jiang M. Nat Commun, 2014, 5(1): 4634. doi:10.1038/ncomms5634http://dx.doi.org/10.1038/ncomms5634
Hashizume Y, Inaka K, Furubayashi N, Kamo M, Takahashi S, Tanaka H. Crystals, 2020, 10(2): 1-21. doi:10.3390/cryst10020078http://dx.doi.org/10.3390/cryst10020078
Hu R, Yang G, Ding H M, Ma J, Ma Y Q, Gan J, Chen G. Ind Eng Chem Res, 2018, 57(19): 6726-6733. doi:10.1021/acs.iecr.8b00657http://dx.doi.org/10.1021/acs.iecr.8b00657
Gupta D, Bhattacharyya L, Fant J, Macaluso F, Sabesan S, Brewer C. Biochemistry-US, 1994, 33(18): 5614-5622. doi:10.1021/bi00184a600http://dx.doi.org/10.1021/bi00184a600
Dessen A, Gupta D, Sabesan S, Brewer C F, Sacchettini J C. Biochemistry-US, 1995, 34(15): 4933-4942. doi:10.1021/bi00015a004http://dx.doi.org/10.1021/bi00015a004
Olsen L R, Dessen A, Gupta D, Sabesan S, Sacchettini J C, Brewer C F. Biochemistry-US, 1997, 36(49): 15073-15080. doi:10.1021/bi971828+http://dx.doi.org/10.1021/bi971828+
Bhattacharyya L, Brewer C F. Eur J Biochem, 1989, 178(3): 721-726. doi:10.1111/j.1432-1033.1989.tb14503.xhttp://dx.doi.org/10.1111/j.1432-1033.1989.tb14503.x
Yang G, Ding H, Kochovski Z, Hu R, Lu Y, Ma Y, Chen G, Jiang M. Angew Chem Int Ed, 2017, 56(36): 10691-10695. doi:10.1002/anie.201703052http://dx.doi.org/10.1002/anie.201703052
Jordan M A, Wilson L. Nat Rev Cancer, 2004, 4(4): 253-265. doi:10.1038/nrc1317http://dx.doi.org/10.1038/nrc1317
Petrov A, Audette G F. WIREs Nanomed Nanobiotechnol, 2012, 4(5): 575-585. doi:10.1002/wnan.1180http://dx.doi.org/10.1002/wnan.1180
Qing Y, Tamagaki-Asahina H, Ionescu S A, Liu M D, Bayley H. Nat Nanotechnol, 2019, 14(12): 1-8. doi:10.1038/s41565-019-0579-7http://dx.doi.org/10.1038/s41565-019-0579-7
Brodin J D, Carr J R, Sontz P A, Tezcan F A. Proc Natl Acad Sci USA, 2014, 111(8): 2897-2902. doi:10.1073/pnas.1319866111http://dx.doi.org/10.1073/pnas.1319866111
Sendai T, Biswas S, Aida T. J Am Chem Soc, 2013, 135(31): 11509-11512. doi:10.1021/ja4060146http://dx.doi.org/10.1021/ja4060146
Ballister E R, Lai A H, Zuckermann R N, Cheng Y, Mougous J D. Proc Natl Acad Sci USA, 2008, 105(10): 3733-3738. doi:10.1073/pnas.0712247105http://dx.doi.org/10.1073/pnas.0712247105
Miranda F F, Iwasaki K, Akashi S, Sumitomo K, Kobayashi M, Yamashita I, Tame J R, Heddle J G. Small, 2009, 5(18): 2077-2084. doi:10.1002/smll.200990091http://dx.doi.org/10.1002/smll.200990091
Sui H, Downing K H. Structure, 2010, 18(8): 1022-1031. doi:10.1016/j.str.2010.05.010http://dx.doi.org/10.1016/j.str.2010.05.010
Li Z, Chen S, Gao C, Yang Z, Shih K, Kochovski Z, Yang G, Gou L, Nieh M, Jiang M, Zhang L, Chen G. J Am Chem Soc, 2019, 141(49): 19448-19457. doi:10.1021/jacs.9b10505http://dx.doi.org/10.1021/jacs.9b10505
Goodson H V, Jonasson E M. CSH Perspect Biol, 2018, 10(6): a022608. doi:10.1101/cshperspect.a022608http://dx.doi.org/10.1101/cshperspect.a022608
Yang G, Hu R, Ding H, Kochovski Z, Mei S, Lu Y, Ma Y, Chen G, Jiang M. Mat Chem Front, 2018, 2(9): 1642-1646. doi:10.1039/c8qm00245bhttp://dx.doi.org/10.1039/c8qm00245b
Yang G, Kochovski Z, Ji Z, Lu Y, Chen G, Jiang M. Chem Commun, 2016, 52(62): 9687-9690. doi:10.1039/c6cc04250chttp://dx.doi.org/10.1039/c6cc04250c
Sun D, Wu R, Li P, Yu L. J Mol Biol, 2020, 432(1): 160-169. doi:10.1016/j.jmb.2019.06.026http://dx.doi.org/10.1016/j.jmb.2019.06.026
Nguyen T K, Ueno T. Curr Opin Struc Biol, 2018, 51: 1-8. doi:10.1016/j.sbi.2017.12.005http://dx.doi.org/10.1016/j.sbi.2017.12.005
Tang T, An B, Huang Y, Vasikaran S, Wang Y, Jiang X, Lu T K, Zhong C. Nat Rev Mater, 2020, 6: 332-350
Csizmar C M, Petersburg J R, Wagner C R. Cell Chem Biol, 2018, 25(8): 931-940. doi:10.1016/j.chembiol.2018.05.009http://dx.doi.org/10.1016/j.chembiol.2018.05.009
Qi W, Zhang Y, Kochovski Z, Wang J, Lu Y, Chen G, Jiang M. Nano Res, 2018, 11(10): 5566-5572. doi:10.1007/s12274-018-2169-7http://dx.doi.org/10.1007/s12274-018-2169-7
Johannes L, Jacob R, Leffler H. J Cell Sci, 2018, 131(9): 1-9. doi:10.1242/jcs.208884http://dx.doi.org/10.1242/jcs.208884
Disney M D, Childs-Disney J L. Chem Biol, 2007, 14(10): 1095-1097. doi:10.1016/j.chembiol.2007.10.002http://dx.doi.org/10.1016/j.chembiol.2007.10.002
Hu Rongting(胡榕婷), Wang Jue(王珏), Yang Jing(杨静), Ding Yu(丁澦), Chen Guosong(陈国颂). Acta Polymerica Sinica(高分子学报), 2019, 50(2): 135-146. doi:10.11777/j.issn1000-3304.2019.18204http://dx.doi.org/10.11777/j.issn1000-3304.2019.18204
Xu M, Liu L, Yan Q. Angew Chem Int Ed, 2018, 57(18): 5029-5032. doi:10.1002/anie.201801081http://dx.doi.org/10.1002/anie.201801081
Ehrick J D, Deo S K, Browning T W, Bachas L G, Madou M J, Daunert S. Nat Mater, 2005, 4(4): 298-302. doi:10.1038/nmat1352http://dx.doi.org/10.1038/nmat1352
Liao X, Chen G, Jiang M. Polym Chem-UK, 2013, 4(6): 1733-1745. doi:10.1039/c2py20693ehttp://dx.doi.org/10.1039/c2py20693e
Li X, Tian R, Ji Y, Liu S, Jiang X, Li F, Luo Q, Hou C, Xu J, Liu J. ACS Macro Lett, 2021, 10(2): 307-311. doi:10.1021/acsmacrolett.0c00805http://dx.doi.org/10.1021/acsmacrolett.0c00805
Gao C, Chen G. Acc Chem Res, 2020, 53(4): 740-751. doi:10.1021/acs.accounts.9b00552http://dx.doi.org/10.1021/acs.accounts.9b00552
Chen G. Giant, 2020, 1: 100004. doi:10.1016/j.giant.2020.100004http://dx.doi.org/10.1016/j.giant.2020.100004
0
浏览量
171
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构