浏览全部资源
扫码关注微信
1.武汉科技大学,化学与化工学院,武汉 430081
2.武汉科技大学,耐火材料与冶金国家重点实验室,武汉 430081
E-mail: zhangxiongzhi@wust.edu.cn
liusimin@wust.edu.cn
纸质出版日期:2021-10-20,
网络出版日期:2021-07-06,
收稿日期:2021-03-02,
修回日期:2021-04-02,
扫 描 看 全 文
刘元勋,刘洋,杨汉等.基于葫芦[10]脲的超分子水凝胶的制备及其在H2O2检测中的应用研究[J].高分子学报,2021,52(10):1361-1367.
Liu Yuan-xun,Liu Yang,Yang Han,et al.Supramolecular Hydrogel Based on Cucurbit[10]uril and Its Application for H2O2 Detection[J].ACTA POLYMERICA SINICA,2021,52(10):1361-1367.
刘元勋,刘洋,杨汉等.基于葫芦[10]脲的超分子水凝胶的制备及其在H2O2检测中的应用研究[J].高分子学报,2021,52(10):1361-1367. DOI: 10.11777/j.issn1000-3304.2021.21062.
Liu Yuan-xun,Liu Yang,Yang Han,et al.Supramolecular Hydrogel Based on Cucurbit[10]uril and Its Application for H2O2 Detection[J].ACTA POLYMERICA SINICA,2021,52(10):1361-1367. DOI: 10.11777/j.issn1000-3304.2021.21062.
以丙烯酰胺(AM)与客体单元二茂铁衍生物(G)在引发剂作用下共聚形成P(AM-G)聚合物. 基于客体分子与主体分子葫芦[10]脲之间的动态主-客体相互作用为交联点制备了超分子水凝胶. 采用核磁、扫描电镜及流变等测试方法对水凝胶的结构、形貌以及自修复性能等进行研究. 结果表明超分子水凝胶为3D多孔结构的弹性体,CB[10]
的引入有利于在聚合物网络中提供交联点,并且本研究中的超分子水凝胶可在没有任何外部刺激的情况下进行自修复. 在水凝胶制备后,二茂铁的固有催化活性仍然得以保留,其良好的催化活性可应用于H
2
O
2
的检测,检测限为2.5×10
-4
mol/L. 本研究为超分子水凝胶功能化提供了一种新的方法,在生物技术和环境化学等领域具有潜在应用.
Acrylamide (AM) was copolymerized with guest units ferrocene derivative (G) to produce P(AM-G) in the presence of initiator. Subsequently
supramolecular hydrogel was fabricated by dynamic host-guest interaction between the guest unit and host molecule cucurbit[10]uril (CB[10]
). The structure
morphology
and self-healing properties of hydrogel were investigated by
1
H-NMR spectra
scanning electron microscopy
rheological tests
etc
. The supramolecular hydrogel presents a 3D network porous structure with elastic characteristic. The dynamic CB[10] host-guest interactions contribute to the formation of crosslinking networks. The obtained supramolecular hydrogel can be self-healing without the assistance of any external stimulus. Investigations on the catalytic properties of the hydrogel show that the intrinsic catalytic activity of the ferrocene can still be preserved after
in situ
fabrication within a hydrogel matrix. The hydrogel exhibited good catalytic activity and provided a sensitive response toward H
2
O
2
with a detection limit of 2.5×10
-4
mol/L. This process provides a novel method for the production of functional supramolecular hydrogels with various potential applications in biotechnology and environmental chemistry.
超分子水凝胶主客体相互作用葫芦[10]脲自修复H2O2检测
Supramolecular hydrogelsHost-guest interactionsCucurbit[10]urilSelf-healingH2O2 detection
Yang Y W, Sun Y L, Song N. Acc Chem Res, 2014, 47(7): 1950-1960. doi:10.1021/ar500022fhttp://dx.doi.org/10.1021/ar500022f
Lu W, Le X, Zhang J, Huang Y, Chen T. Chem Soc Rev, 2017, 46(5): 1284-1294. doi:10.1039/c6cs00754fhttp://dx.doi.org/10.1039/c6cs00754f
Voorhaar L, Hoogenboom R. Chem Soc Rev, 2016, 45(14): 4013-4031. doi:10.1039/c6cs00130khttp://dx.doi.org/10.1039/c6cs00130k
Feng Qian(冯茜), Zhang Kunyu(张琨雨), Li Rui(李睿), Bian Liming(边黎明). Acta Polymerica Sinica(高分子学报), 2021, 52(1): 1-15
Yu G, Jie K, Huang F H. Chem Rev, 2015, 115(15): 7240-7303. doi:10.1021/cr5005315http://dx.doi.org/10.1021/cr5005315
Tian Xueqi(田雪琪), Zuo Minzan(左旻瓒), Niu Pengbo(牛蓬勃), Wang Kaiya(王开亚), Hu Xiaoyu(胡晓玉). Chinese J Org Chem(有机化学), 2020, 40(7): 1823-1834. doi:10.6023/cjoc202003066http://dx.doi.org/10.6023/cjoc202003066
Yang L, Tan X, Wang Z, Zhang X. Chem Rev, 2015, 115(15): 7196-7239. doi:10.1021/cr500633bhttp://dx.doi.org/10.1021/cr500633b
Jin J, Cai L, Jia Y G, Liu S, Chen Y, Ren L. J Mater Chem B, 2019, 7(10): 1637-1651. doi:10.1039/c8tb02547ahttp://dx.doi.org/10.1039/c8tb02547a
Zheng J, Xiao P, Liu W, Zhang J, Huang Y, Chen T. Macromol Rapid Commun, 2016, 37(3): 265-270. doi:10.1002/marc.201500571http://dx.doi.org/10.1002/marc.201500571
Li Yixuan(李懿轩), Sun Junqi(孙俊奇). Acta Polymerica Sinica(高分子学报), 2020, 51(8): 791-803. doi:10.11777/j.issn1000-3304.2020.20062http://dx.doi.org/10.11777/j.issn1000-3304.2020.20062
Ma Q, Zhang M, Yao C, Du Y, Yang D. Chem Eng J, 2020, 394: 124894. doi:10.1016/j.cej.2020.124894http://dx.doi.org/10.1016/j.cej.2020.124894
Wei Z, Yang J H, Zhou J, Xu F, Zrínyi M, Dussault P H, OsadaY, Chen Y M. Chem Soc Rev, 2014, 43(23): 8114-8131. doi:10.1039/c4cs00219ahttp://dx.doi.org/10.1039/c4cs00219a
Wang S, Xu Z, Wang T, Xiao T, Hu X Y, Shen Y Z, Wang L. Nat Commun, 2018, 9: 1737. doi:10.1038/s41467-018-03827-3http://dx.doi.org/10.1038/s41467-018-03827-3
Ma X, Zhao Y. Chem Rev, 2015, 115(15): 7794-7839. doi:10.1021/cr500392whttp://dx.doi.org/10.1021/cr500392w
Bhattacharya S, Samanta S K. Chem Rev, 2016, 116(19): 11967-12028. doi:10.1021/acs.chemrev.6b00221http://dx.doi.org/10.1021/acs.chemrev.6b00221
Mehwish N, Dou X, Zhao Y, Feng C L. Mater Horiz, 2019, 6(1): 14-44. doi:10.1039/c8mh01130chttp://dx.doi.org/10.1039/c8mh01130c
Jiang Z, Tan M L, Taheri M, Yan Q, Tsuzuki T, Gardiner M G, Diggle B, Connal L A. Angew Chem Int Ed, 2020, 59(18): 7049-7056. doi:10.1002/anie.201916058http://dx.doi.org/10.1002/anie.201916058
Zhang B, He J, Shi M, Liang Y, Guo B. Chem Eng J, 2020, 400: 125994. doi:10.1016/j.cej.2020.125994http://dx.doi.org/10.1016/j.cej.2020.125994
Chen L, Chen Y, Zhang Y, Liu Y. Angew Chem Int Ed, 2021, 60(14): 7654-7658. doi:10.1002/anie.202017001http://dx.doi.org/10.1002/anie.202017001
Xia D, Wang P, Ji X, Khashab N M, Sessler J L, Huang F H. Chem Rev, 2020, 120(13): 6070-6123. doi:10.1021/acs.chemrev.9b00839http://dx.doi.org/10.1021/acs.chemrev.9b00839
Xiao T, Xu L, Zhou L, Sun X Q, Lin C, Wang L. J Mater Chem B, 2019, 7(10): 1526-1540. doi:10.1039/c8tb02339ehttp://dx.doi.org/10.1039/c8tb02339e
Zhao Q, Chen Y, Li S H, Liu Y. Chem Commun, 2018, 54(2): 200-203. doi:10.1039/c7cc08822ahttp://dx.doi.org/10.1039/c7cc08822a
Wang K P, Chen Y, Liu Y. Chem Commun, 2015, 51(9): 1647-1649. doi:10.1039/c4cc08721fhttp://dx.doi.org/10.1039/c4cc08721f
Wang H, Zhu C N, Zeng H, Ji X, XieT,Yan X, Wu Z L, Huang F H. Adv Mater, 2019, 31(12): 1807328. doi:10.1002/adma.201807328http://dx.doi.org/10.1002/adma.201807328
Li Yawen(李亚雯), Ao Wantong(敖宛彤), Jin Huilin(金慧琳), Cao Liping(曹利平). Prog Chem(化学进展), 2019, 31(01): 133-145
Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew Chem Int Ed, 2005, 44(31): 4844-4870. doi:10.1002/anie.200460675http://dx.doi.org/10.1002/anie.200460675
Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X. RSC Adv, 2012, 2(4): 1213-1247. doi:10.1039/c1ra00768hhttp://dx.doi.org/10.1039/c1ra00768h
Shetty D, Khedkar J K, Park K M, Kim K. Chem Soc Rev, 2015, 44(23): 8747-8761. doi:10.1039/c5cs00631ghttp://dx.doi.org/10.1039/c5cs00631g
Assaf K I, Nau W M. Chem Soc Rev, 2015, 44(2): 394-418. doi:10.1039/c4cs00273chttp://dx.doi.org/10.1039/c4cs00273c
Yang X R, Liu F B, Zhao Z Y, Liang F, Zhang H J, Liu S M. Chin Chem Lett, 2018, 29(11): 1560-1566. doi:10.1016/j.cclet.2018.01.032http://dx.doi.org/10.1016/j.cclet.2018.01.032
Barrow S J, Kasera S, Rowland M J, del Barrio J, Scherman O A. Chem Rev, 2015, 115(22): 12320-12406. doi:10.1021/acs.chemrev.5b00341http://dx.doi.org/10.1021/acs.chemrev.5b00341
Yan X, Wang F, Zheng B, Huang F. Chem Soc Rev, 2012, 41(18): 6042-6065. doi:10.1039/c2cs35091bhttp://dx.doi.org/10.1039/c2cs35091b
Yang L, Tan X, Wang Z, Zhang X. Chem Rev, 2015, 115(15): 7196-7239. doi:10.1021/cr500633bhttp://dx.doi.org/10.1021/cr500633b
Chen K, Liang L, Zhang Y Q,Zhu Q J, Xue S F, Tao Z. Inorg Chem, 2011, 50(16): 7754-7760. doi:10.1021/ic200902ghttp://dx.doi.org/10.1021/ic200902g
Park K M, Yang J A, Jung H, Yeom J, Park J S, Park K H, Hoffman A S, Hahn S K, Kim K. ACS Nano, 2012, 6(4): 2960-2968. doi:10.1021/nn204123phttp://dx.doi.org/10.1021/nn204123p
Jung H, Park J S, Yeom J, Selvapalam N, Park K M, OhK,Yang J A, Park K H, Hahn S K, Kim K, Biomacromolecules, 2014, 15(3): 707-714. doi:10.1021/bm401123mhttp://dx.doi.org/10.1021/bm401123m
ChenH,Hou S, Ma H, Li X, Tan Y B. Sci Rep, 2016, 6: 20722. doi:10.1038/srep20722http://dx.doi.org/10.1038/srep20722
Zou L, Braegelman A S, Webber M J. ACS Appl Mater Interfaces 2019, 11(6): 5695-5700. doi:10.1021/acsami.8b22151http://dx.doi.org/10.1021/acsami.8b22151
Appel E A, Biedermann F, Rauwald U, Jones S T, Zayed J M, Scherman O A. J Am Chem Soc, 2010, 132(40): 14251-14260. doi:10.1021/ja106362whttp://dx.doi.org/10.1021/ja106362w
Appel E A, Loh X J, Jones X T, Biedermann F, Dreiss C A, Scherman O A. J Am Chem Soc, 2012, 134(28): 11767-11773. doi:10.1021/ja3044568http://dx.doi.org/10.1021/ja3044568
Tan C S Y, Liu J, Groombridge A S, Barrow S J, Dreiss C A, Scherman O A. Adv Funct Mater, 2018, 28(7): 1702994. doi:10.1002/adfm.201702994http://dx.doi.org/10.1002/adfm.201702994
Kuang S J, Hu Z X, Zhang H, Zhang X Z, Liang F, Zhao Z Y, Liu S M. Chem Commun, 2018, 54(17): 2169-2172. doi:10.1039/c8cc00593ahttp://dx.doi.org/10.1039/c8cc00593a
Yang X R, Zhao Z Y, Zhang X Z, Liu S M. Sci China Chem, 2018, 61: 787-791. doi:10.1007/s11426-017-9173-4http://dx.doi.org/10.1007/s11426-017-9173-4
Fan L, Zhang Q, Wang K, Li F, Niu L. J Mater Chem, 2012, 22(13): 6165-6170. doi:10.1039/c2jm15411khttp://dx.doi.org/10.1039/c2jm15411k
Gu H, Mu S, Qiu G, Liu X, Zhang L, Yuan Y, Astruc D. Coord Chem Rev, 2018, 364: 51-85. doi:10.1016/j.ccr.2018.03.013http://dx.doi.org/10.1016/j.ccr.2018.03.013
Zainul A, Wang L, Yu H, Saleem M, Akram M, Khalid H, Abbasi N M, Yang X. J Colloid Interface Sci, 2017, 487: 38-51
Ding Y, Zhao Y, Li Y, Goodenough J B, Yu G. Energy Environ Sci, 2017, 10(2): 491-497. doi:10.1039/c6ee02057ghttp://dx.doi.org/10.1039/c6ee02057g
Divyapriya G, Srinivasan R, Nambi I M, Senthilnathan J. Electrochim Acta, 2018, 283: 858-870. doi:10.1016/j.electacta.2018.06.186http://dx.doi.org/10.1016/j.electacta.2018.06.186
Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L. J Am Chem Soc, 2013, 135(28): 10542-10549. doi:10.1021/ja405014rhttp://dx.doi.org/10.1021/ja405014r
Wang Y, Yin W, Ke W, Chen W, He C, Ge Z. Biomacromolecules, 2018, 19(6): 1990-1998. doi:10.1021/acs.biomac.7b01777http://dx.doi.org/10.1021/acs.biomac.7b01777
Deng Y Y, Yin H, Zhao Z, Wang R B, Liu S M. Supramol Chem, 2018, 30(8): 706-712. doi:10.1080/10610278.2018.1455977http://dx.doi.org/10.1080/10610278.2018.1455977
Hu X C, Liu F B, Zhang X Z, Zhao Z Y, Liu S M. Chem Sci, 2020, 11(18): 4779-4785. doi:10.1039/d0sc00409jhttp://dx.doi.org/10.1039/d0sc00409j
Tang B, Zhao J, Jiao Y, Xu J F, Zhang X. Chem Commun, 2019, 55(94): 14127-14130. doi:10.1039/c9cc06877ehttp://dx.doi.org/10.1039/c9cc06877e
Yang Q, Wang P, Zhao C, Wang W, Yang J, Liu Q. Macromol Rapid Commun, 2017, 38(6): 1600741. doi:10.1002/marc.201600741http://dx.doi.org/10.1002/marc.201600741
Du X, Zhou J, Shi J, Xu B. Chem Rev, 2015, 115(24): 13165-13307. doi:10.1021/acs.chemrev.5b00299http://dx.doi.org/10.1021/acs.chemrev.5b00299
Hu J, Hiwatashi K, Kurokawa K, Liang S M, Wu Z L, Gong J P. Macromolecules, 2011, 44(19): 7775-7781. doi:10.1021/ma2016248http://dx.doi.org/10.1021/ma2016248
Eslahi N, Abdorahim M, Simchi A. Biomacromolecules, 2016, 17(11): 3441-3463. doi:10.1021/acs.biomac.6b01235http://dx.doi.org/10.1021/acs.biomac.6b01235
Xu X, Jerca V V, Hoogenboom R. Macromol Rapid Commun, 2020, 41(4): 1900457. doi:10.1002/marc.201900457http://dx.doi.org/10.1002/marc.201900457
Zhang Y, Liang L, Chen Y, Chen X M, Liu Y. Soft Matter, 2019, 15(1): 73-77. doi:10.1039/c8sm02203hhttp://dx.doi.org/10.1039/c8sm02203h
Zhang X Z, Liu Y X, Wen J W, Zhao Z Y, Chen H X, Liu X H, Liu S M. Soft Matter, 2020, 16(14): 3416-3424. doi:10.1039/d0sm00271bhttp://dx.doi.org/10.1039/d0sm00271b
Song S, Liu Y, Song A, Zhao Z, Lu H, Hao J. J Colloid Interface Sci, 2017, 506: 46-57. doi:10.1016/j.jcis.2017.07.029http://dx.doi.org/10.1016/j.jcis.2017.07.029
Zhang Q M, Berg D, Duan J, Mugo S M, Serpe M J. ACS Appl Mater Interfaces, 2016, 8(40): 27264-27269. doi:10.1021/acsami.6b11462http://dx.doi.org/10.1021/acsami.6b11462
Gao Y, Wei Z, Li F, Yang Z, Chen Y, Zrinyi M, Osada Y. Green Chem, 2014, 16(3): 1255-1261. doi:10.1039/c3gc41535jhttp://dx.doi.org/10.1039/c3gc41535j
Lu J, Zhang H, Li S, Guo S, Shen L, Zhou T, Zhong H, Wu L, Meng Q, Zhang Y. Inorg Chem, 2020, 59(5): 3152-3159. doi:10.1021/acs.inorgchem.9b03512http://dx.doi.org/10.1021/acs.inorgchem.9b03512
0
浏览量
72
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构