浏览全部资源
扫码关注微信
1.浙江大学高分子科学与工程学系 教育部高分子合成与功能构造重点实验室 杭州 310027
2.香港中文大学(深圳)理工学院 分子聚集体科学实验室 深圳 518172
[ "孙景志,男,1964年生,蒙古族. 分别于1986、1996、1999年在吉林大学获得理学学士、硕士、博士学位,博士导师为沈家骢院士. 1986~1996年于辽阳石油化纤公司工作,1999~2001在浙江大学做博士后研究,出站后留高分子科学与工程学系任教至今. 2006年晋升教授,2017年与唐本忠院士团队一起获得2017年度国家自然科学奖一等奖. 主要从事聚集诱导发光机理研究、荧光材料在化学与生物检测中的应用、功能性聚炔方面的研究." ]
[ "唐本忠,男,1957年生. 1982年于华南理工大学获学士学位,1985、1988年先后获日本京都大学硕士、博士学位;1994年加盟香港科技大学. 主要开展聚集诱导发光机理探索、材料体系研发和在生物检测与成像领域的应用以及基于三键化合物的高分子合成化学等研究. 2009年当选中国科学院院士,2013年入选英国皇家化学会Fellow. 现任香港中文大学(深圳)理工学院院长、国家自然科学基金基础科学中心项目负责人、广东省引进创新科研团队带头人、华南理工大学发光材料与器件国家重点实验室学术委员会主任、人体组织功能重建国家工程技术研究中心香港分中心并任主任. 获国家自然科学二等奖(2007年)、裘槎高级研究成就奖(2007年)、第27届夸瑞兹密国际科学奖(2014年)、国家自然科学一等奖(2017年,第一完成人)、何梁何利科学与技术进步奖(2017年). 现为中国化学会与英国皇家化学会联合期刊《Materials Chemistry Frontiers》和中国化学会与Wiley出版社联合期刊《Aggregates》主编." ]
纸质出版日期:2021-08-20,
网络出版日期:2021-07-12,
收稿日期:2021-03-04,
修回日期:2021-05-12,
扫 描 看 全 文
杨富麟,张洁,孙景志等.聚(1-氯-2-苯基乙炔)衍生物研究进展[J].高分子学报,2021,52(08):911-919.
Yang Fu-lin,Zhang Jie,Sun Jing-zhi,et al.Progress in the Polymerization of 1-Chloro-2-phenylacetylene Derivatives[J].ACTA POLYMERICA SINICA,2021,52(08):911-919.
杨富麟,张洁,孙景志等.聚(1-氯-2-苯基乙炔)衍生物研究进展[J].高分子学报,2021,52(08):911-919. DOI: 10.11777/j.issn1000-3304.2021.21066.
Yang Fu-lin,Zhang Jie,Sun Jing-zhi,et al.Progress in the Polymerization of 1-Chloro-2-phenylacetylene Derivatives[J].ACTA POLYMERICA SINICA,2021,52(08):911-919. DOI: 10.11777/j.issn1000-3304.2021.21066.
双取代乙炔聚合物在小分子气体渗透与分离、发光弹性体、偏振荧光发射等领域有着突出的表现,成为聚乙炔研究领域的主流方向,聚(1-氯-2-苯基乙炔)衍生物是其中的一个特殊品种,对该类聚合物的聚合反应催化剂、聚合反应机理的深入研究对于发展功能性双取代乙炔聚合物具有重要意义. 本文简要回顾聚(1-氯-2-苯基乙炔)衍生物合成的发展历程,通过典型案例分析催化剂体系的演进过程中研究者们解决的一系列科学问题,总结催化剂体系、推拉电子取代基对聚合反应的影响,同时沿着超高透气性聚(双取代乙炔)研究及其在气体分离领域中的应用探索的发展脉络,指出该领域在催化剂研制、反应路线设计等方面的关键问题和可能解决方案,为制备具有先进功能的聚(双取代乙炔)提供了新思路.
Poly(disubstituted acetylenes) (PDSAs) have shown excellent performance in gas permeability
polarized light emission
and fluorescent elastomers
and therefore have attracted great attention from researchers in relevant fields. Among a variety of PDSAs
the development history of poly(1-chloro-2-phenylacetylene)s is an ideal epitome of the progress of polyacetylenes. In this mini review
from traditional polymerization catalysts of late transition metal complexes to newly developed Pd-based catalyst systems
from nonpolar substituents to various polar functional groups on monomers
from inner apolar solvents to common polar solvents as polymerization media
different aspects of the polymerization of 1-chloro-1-alkynes
especially 1-chloro-2-phenylacetylenes are retrospected with a series of examples. Meanwhile
this review lays another clue
or the efforts on pursuing for PDSAs possessing ultrahigh permeability and good separation property of gases such as H
2
N
2
O
2
CO
2
and CH
4
an utmost important application of polymer materials. The greatly enhanced tolerance to polar groups of the Pd-based catalyst systems
in contrast with the traditional catalyst complexes
allows to introduce polar functionalities and active sites into the structure of PDSAs
thereby offering the chances to tackle the problem of the very low selectivity to different gas pairs. The realistic demands for gas collection and separation prompt the development of novel catalyst systems and synthetic strategies to PDSAs with intrinsic microporous structures. Moreover
due to the unique conjugated polyene main-chain and regioregular configuration
PDSAs are conceived as one of the promising candidates for the construction of PIMs. Finally
perspectives and suggestions of the functional design and synthetic efforts are presented.
聚(双取代乙炔)1-氯-2-苯基乙炔Pd-基复合催化剂本征微孔聚合物气体透过性
Poly(disubstituted acetylene)s1-Chloro-2-phenylacetylenePd-based complex catalystPolymers with intrinsic microporousGas permeability
Shirakawa H, Louis E J, Macdiarmid A J, Chiang C K, Heeger A J. J Chem Soc Chem Commun, 1977, 16: 578-580. doi:10.1039/c39770000578http://dx.doi.org/10.1039/c39770000578
Kwak G, Minakuchi M, Sakaguchi T, Masuda T, Fujiki M. Chem Mater, 2007, 19: 3654-3661. doi:10.1021/cm070303thttp://dx.doi.org/10.1021/cm070303t
Lam J W Y, Luo J D, Dong Y P, Cheuk K K L, Tang B Z. Macromolecules, 2002, 35: 8288-8299. doi:10.1021/ma021011ahttp://dx.doi.org/10.1021/ma021011a
Liu J Z, Lam, W Y, Tang B Z. Chem Rev, 2009, 109: 5799-5867. doi:10.1021/cr900149dhttp://dx.doi.org/10.1021/cr900149d
Masuda T. Polym Rev, 2017, 57: 1-14. doi:10.1080/15583724.2016.1170701http://dx.doi.org/10.1080/15583724.2016.1170701
Wang X, Sun J Z, Tang B Z. Prog Polym Sci, 2018, 79: 98-120. doi:10.1016/j.progpolymsci.2017.11.004http://dx.doi.org/10.1016/j.progpolymsci.2017.11.004
Masuda T, Kuwane Y, Higashimura T. J Polym Sci Polym Chem Ed, 1982, 20: 1043-1050. doi:10.1002/pol.1982.170200413http://dx.doi.org/10.1002/pol.1982.170200413
Kawasaki M, Masuda T, Higashimura T. Polym J (Tokyo), 1983, 15: 767-770. doi:10.1295/polymj.15.767http://dx.doi.org/10.1295/polymj.15.767
Masuda T, Yamagata M, Higashimura T. Macromolecules, 1984, 17: 126-129. doi:10.1021/ma00132a002http://dx.doi.org/10.1021/ma00132a002
Yamagata M, Masuda T, Higashimura T. J Polym Sci, Polym Chem Ed, 1984, 22: 2275-2279. doi:10.1002/pol.1984.170220927http://dx.doi.org/10.1002/pol.1984.170220927
Masuda T, Tamura K, Higashimura T. J Chem Soc Chem Commun, 1985, 22: 1615-1616. doi:10.1039/c39850001615http://dx.doi.org/10.1039/c39850001615
Masuda T, Yoshimura T, Tamura K, Higashimura T. Macromolecules, 1987, 20: 1734-1739. doi:10.1021/ma00174a002http://dx.doi.org/10.1021/ma00174a002
Masuda T, Isobe E, Higashimura T, Takada K. J Am Chem Soc, 1983, 105: 7473-7474. doi:10.1021/ja00363a061http://dx.doi.org/10.1021/ja00363a061
Taniguchi Y, Sakaguchi T, Shiotsuki M, Sanda F, Masuda T. Macromolecules, 2006, 39: 243-248. doi:10.1021/ma0519819http://dx.doi.org/10.1021/ma0519819
Sakaguchi T, Takeda A, Hashimoto T. Macromolecules, 2011, 44: 6810-6817. doi:10.1021/ma201280shttp://dx.doi.org/10.1021/ma201280s
Hu Y, Shiotsuki M, Sanda F, Freeman B D, Masuda T. Macromolecules, 2008, 41: 8525-8532. doi:10.1021/ma801845ghttp://dx.doi.org/10.1021/ma801845g
Rose I, BezzuG G, Carta M, Gándara B C, Lasseuguette E, Ferrari M C, Bernardo P, Clarizia G, Fuoco A, Jansen J C, Hart K E, Liyana-Arachchi T P, Colina C M, McKeown N B. Nat Mater, 2017, 16: 932-938. doi:10.1038/nmat4939http://dx.doi.org/10.1038/nmat4939
Koros W J, Zhang C. Mater Nat, 2017, 16: 289-297. doi:10.1038/nmat4805http://dx.doi.org/10.1038/nmat4805
Low Z X, Budd P M, McKeown N B, Patterson D A, Rev Chem, 2018, 118: 5871-5911. doi:10.1021/acs.chemrev.7b00629http://dx.doi.org/10.1021/acs.chemrev.7b00629
Martin-Gil V, Ahmad M Z, Castro-Munoz R, Fila V, Separat Purif Rev, 2019, 48: 298-324. doi:10.1080/15422119.2018.1532911http://dx.doi.org/10.1080/15422119.2018.1532911
Ojwach S O, Guzei I A, Darkwa J, Mapolie S F. Polyhedron, 2007, 26: 851-861. doi:10.1016/j.poly.2006.09.007http://dx.doi.org/10.1016/j.poly.2006.09.007
Castanon J R, Kuwata K, Shiotsuki M, Sanda F. Chem Eur J, 2012, 18: 14085-14093. doi:10.1002/chem.201202256http://dx.doi.org/10.1002/chem.201202256
Castanon J R, Sano N, Shiotsuki M, Sanda F. ACS Macro Lett, 2014, 3: 51-54. doi:10.1021/mz400562mhttp://dx.doi.org/10.1021/mz400562m
Rodriguez-Castanon J, Murayama Y, Sano N, Sanda F. Chem Lett, 2015, 44: 1200-1201. doi:10.1246/cl.150457http://dx.doi.org/10.1246/cl.150457
Li M, Chen C L. Polym Chem, 2015, 6: 7127-7132. doi:10.1039/c5py01067ehttp://dx.doi.org/10.1039/c5py01067e
Castanon J R, Sano N, Shiotsuki M, Sanda F. J Polym Sci, Part A: Polym Chem, 2017, 55: 382-388. doi:10.1002/pola.28397http://dx.doi.org/10.1002/pola.28397
Wang Y M, Wang W J, Wang X, Cheng X, Qin A, Sun J Z, Tang B Z. Polym Chem, 2017, 8: 5546-5553. doi:10.1039/c7py01110ehttp://dx.doi.org/10.1039/c7py01110e
Wu X, Yang Z, Yan X W, Zhang P F, Wang L, Guo G, Dong Y P, Li X F. Polym Chem, 2018, 9: 4856-4865. doi:10.1039/c8py00903ahttp://dx.doi.org/10.1039/c8py00903a
Yan X W, Zhang S W, Zhang P F, Wu X, Liu A, Guo G, Dong Y P, Li X F. Angew Chem Int Ed, 2018, 57: 8947-8952. doi:10.1002/anie.201803300http://dx.doi.org/10.1002/anie.201803300
Yang F, Zhang S, Shen T, Ni J, Zhang J, Cheng X, Sun J Z, Fu Z, Tang B Z. Polym Chem, 2019, 10: 4801-4809. doi:10.1039/c9py00974dhttp://dx.doi.org/10.1039/c9py00974d
Johnson L K, Killian C L, Brookhart M. J Am Chem Soc, 1995, 117: 6414-6415. doi:10.1021/ja00128a054http://dx.doi.org/10.1021/ja00128a054
Johnson L K, Mecking A S, Brookhart M. J Am Chem Soc,1996, 118: 267-268. doi:10.1021/ja953247ihttp://dx.doi.org/10.1021/ja953247i
La P, Brookhart M. Organometallics, 1998, 17: 240-248. doi:10.1021/om980542dhttp://dx.doi.org/10.1021/om980542d
Liu X, Xu J F, Wang Z, Zhang X. Polym Chem, 2016, 7: 2333-2336. doi:10.1039/c6py00071ahttp://dx.doi.org/10.1039/c6py00071a
Lin Y, Sakaguchi T, Hashimoto T. RSC Adv, 2020, 10: 14637-14643. doi:10.1039/d0ra02020fhttp://dx.doi.org/10.1039/d0ra02020f
Zhang X A, Chen M R, Zhao H, Gao Y, Wei Q, Zhang S, Qin A, Sun J Z, Tang B Z. Macromolecules, 2011, 44: 6724-6731. doi:10.1021/ma2014657http://dx.doi.org/10.1021/ma2014657
0
浏览量
72
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构