浏览全部资源
扫码关注微信
1.中国科学院上海应用物理研究所 上海 201800
2.中国科学院大学 北京 100049
3.上海交通大学化学化工学院 上海 200240
4.中国科学院上海高等研究院 上海 201210
E-mail: shenjianlei@sjtu.edu.cn
纸质出版日期:2021-09-20,
网络出版日期:2021-08-17,
收稿日期:2021-03-05,
扫 描 看 全 文
杨阳,陈斌,翟婷婷等.聚集诱导发光分子寡聚体研究进展[J].高分子学报,2021,52(09):1100-1117.
Yang Yang,Chen Bin,Zhai Ting-ting,et al.Recent Progress of Aggregation-induced Emission Molecular Oligomers[J].ACTA POLYMERICA SINICA,2021,52(09):1100-1117.
杨阳,陈斌,翟婷婷等.聚集诱导发光分子寡聚体研究进展[J].高分子学报,2021,52(09):1100-1117. DOI: 10.11777/j.issn1000-3304.2021.21067.
Yang Yang,Chen Bin,Zhai Ting-ting,et al.Recent Progress of Aggregation-induced Emission Molecular Oligomers[J].ACTA POLYMERICA SINICA,2021,52(09):1100-1117. DOI: 10.11777/j.issn1000-3304.2021.21067.
分子聚集行为与细胞内多种代谢过程息息相关,如细胞衰老过程中色斑形成,A
β
肽在阿尔茨海默病病人的脑中聚集行为等. 定量化的研究分子聚集效应对于研究分子间的弱相互作用,分子聚集成核过程至关重要. 目前,针对聚集效应初期分子寡聚体形成过程的研究仍然处于初期阶段. 聚集诱导发光(aggregation-induced emission,AIE)为研究分子聚集行为提供了一种直观、便捷的策略. 但是,由于聚集过程的难以精细控制,定量化描述聚集分子数目与发光行为的关系仍然是巨大的挑战. 本综述对近期制备聚集诱导发光分子寡聚体的工作进行汇总. 根据形成分子寡聚体的作用力的不同,将目前构建荧光分子寡聚体方法分为以下4类:化学成键作用、主客体相互作用、DNA限域作用和微纳空间限域作用. 进一步地,还讨论了分子聚集体的发光行为. 通过本综述,有望推动AIE分子寡聚体发光性质的量化研究并为研究分子聚集成核过程带来一定的启示.
聚集诱导发光自组装分子寡聚体共价有机框架DNA
Aggregation-induced emissionSelf-assemblyMolecule aggregatesCovalent organic frameworksDNA
Birks J B. Photophysics of Aromatic Molecules. New York: Wiley-Interscience. 1970
Luo J, Xie Z, Lam J W, Cheng L, Chen H, Qiu C, Kwok H S. Chem Commun, 2001, 18: 1740-1741. doi:10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
Chen J, Law C C, Lam J W, Dong Y, Lo S M, Williams I D, Zhu D. Chem Mater, 2003, 15(7): 1535-1546. doi:10.1021/cm021715zhttp://dx.doi.org/10.1021/cm021715z
Leung N L, Xie N, Yuan W, Liu Y, Wu Q, Peng Q, Miao Q. Chem Eur J, 2014, 20(47): 15349-15353. doi:10.1002/chem.201403811http://dx.doi.org/10.1002/chem.201403811
Yao L, Zhang S, Wang R, Li W, Shen F, Yang B, Ma Y. Angew Chem Int Ed, 2014, 53(8): 2119-2123. doi:10.1002/anie.201308486http://dx.doi.org/10.1002/anie.201308486
Zhang C, Wang Z, Song S, Meng X, Zheng Y S, Yang X L, Xu H B. J Org Chem, 2014, 79(6): 2729-2732. doi:10.1021/jo402884ahttp://dx.doi.org/10.1021/jo402884a
Virgili T, Forni A, Cariati E, Pasini D, Botta C. J Phys Chem C, 2013, 117(51): 27161-27166. doi:10.1021/jp4104504http://dx.doi.org/10.1021/jp4104504
Cai Y J, Du L L, Samedov K, Gu X G, Qi F, Sung H H Y, Patrick B O. Chem Sci, 2018, 9(20): 4662-4670. doi:10.1039/c8sc01170bhttp://dx.doi.org/10.1039/c8sc01170b
Zhao Z, Zheng X Y, Du L L, Xiong Y, He W, Gao X X, Li C L. Nat Commun, 2019, 10: 1-10. doi:10.1038/s41467-019-13048-xhttp://dx.doi.org/10.1038/s41467-019-13048-x
Mei J, Hong Y, Lam J W, Qin A, Tang Y, Tang B Z. Adv Mater, 2014, 26(31): 5429-5479. doi:10.1002/adma.201401356http://dx.doi.org/10.1002/adma.201401356
Yan Liqiang(闫力强). Synthesis and Property Investigation of Novel Organic Materials with "AIE+ESIPT" Characteristics(基于聚集诱导发光(AIE)和分子内质子转移(ESIPT)效应有机材料的合成及性能研究). Doctoral Dissertation of Southeast University(东南大学博士学位论文), 2017. doi:10.1016/j.tetlet.2017.08.016http://dx.doi.org/10.1016/j.tetlet.2017.08.016
Gao Y J, Chang X P, Liu X Y, Li Q S, Cui G, Thiel W. J Phys Chem A, 2017, 121(13): 2572-2579. doi:10.1021/acs.jpca.7b00197http://dx.doi.org/10.1021/acs.jpca.7b00197
Tu Y, Liu J, Zhang H, Peng Q, Lam J W Y, Tang B Z. Angew Chem Int Ed, 2019, 58(42): 14911-14914. doi:10.1002/anie.201907522http://dx.doi.org/10.1002/anie.201907522
Zhang H, Liu J, Du L, Ma C, Leung N L C, Niu Y, Qin A. Mater Chem Front, 2019, 3(6): 1143-1150. doi:10.1039/c9qm00156ehttp://dx.doi.org/10.1039/c9qm00156e
Zhou P, Li P, Zhao Y, Han K. J Phys Chem Lett, 2019, 10(21): 6929-6935. doi:10.1021/acs.jpclett.9b02922http://dx.doi.org/10.1021/acs.jpclett.9b02922
Yang J, Chi Z G, Zhu W H, Tang B Z, Li Z. Sci China Chem, 2019, 62(9): 1090-1098. doi:10.1007/s11426-019-9512-xhttp://dx.doi.org/10.1007/s11426-019-9512-x
Song N, Zhang Z, Liu P, Yang Y W, Wang L, Wang D, Tang B Z. Adv Mater, 2020, 32(49): 2004208. doi:10.1002/adma.202004208http://dx.doi.org/10.1002/adma.202004208
Zhang H, Zhao Z, Turley A T, Wang L, McGonigal P R, Tu Y, Li Y, Wang Z, Kwok, R T K, Lam, J W Y, Tang B Z. Adv Mater, 2020, 32(36): 2001457. doi:10.1002/adma.202001457http://dx.doi.org/10.1002/adma.202001457
Xu W, Wang D, Tang B Z. Angew Chem Int Ed, 2020, 60(14): 7476-7487. doi:10.1002/anie.202005899http://dx.doi.org/10.1002/anie.202005899
Zhao Z, Zhang H, Lam J W Y, Tang B Z. Angew Chem Int Ed, 2020, 59(25): 9888-9907. doi:10.1002/anie.201916729http://dx.doi.org/10.1002/anie.201916729
Li J, Wang J, Li H, Song N, Wang, D, Tang B Z. Chem Soc Rev, 2020, 49(4): 1144-1172. doi:10.1039/c9cs00495ehttp://dx.doi.org/10.1039/c9cs00495e
Feng H T, Lam J W Y, Tang B Z. Coord Chem Rev, 2020, 406: 213142. doi:10.1016/j.ccr.2019.213142http://dx.doi.org/10.1016/j.ccr.2019.213142
Zhao W, He Z, Tang B Z. Nat Rev Mater, 2020, 5(12): 869-885. doi:10.1038/s41578-020-0223-zhttp://dx.doi.org/10.1038/s41578-020-0223-z
Zhang R, Feng G, Zhang C J, Cai X, Cheng X, Liu B. Anal Chem, 2016, 88(9): 4841-4848. doi:10.1021/acs.analchem.6b00524http://dx.doi.org/10.1021/acs.analchem.6b00524
Song Z, Mao D, Sung S H, Kwok R T, Lam J W, Kong D, Ding D. Adv Mater, 2016, 28(33): 7249-7256. doi:10.1002/adma.201601214http://dx.doi.org/10.1002/adma.201601214
Zhao E, Hong Y, Chen S, Leung C W, Chan C Y, Kwok R T, Lam J W. Adv Healthc Mater, 2014, 3(1): 88-96. doi:10.1002/adhm.201200475http://dx.doi.org/10.1002/adhm.201200475
Zhao E, Chen Y, Wang H, Chen S, Lam J W, Leung C W, Hong Y. ACS Appl Mater Interfaces, 2015, 7(13): 7180-7188. doi:10.1021/am509142khttp://dx.doi.org/10.1021/am509142k
Yuan Y, Zhang C J, Liu B. Angew Chem Int Ed , 2015, 54(39): 11419-11423. doi:10.1002/anie.201503640http://dx.doi.org/10.1002/anie.201503640
Ding D, Li K, Liu B, Tang B Z. Acc Chem Res, 2013, 46(11): 2441-2453. doi:10.1021/ar3003464http://dx.doi.org/10.1021/ar3003464
Mei J, Huang Y, Tian H. ACS Appl Mater Interfaces, 2018, 10(15): 12217-12261. doi:10.1021/acsami.7b14343http://dx.doi.org/10.1021/acsami.7b14343
Gao H, Zhang X, Chen C, Li K, Ding D. Adv Biosyst, 2018, 2(9): 1800074. doi:10.1002/adbi.201800074http://dx.doi.org/10.1002/adbi.201800074
Gao M, Tang B Z. Coord Chem Rev, 2020, 402: 213076. doi:10.1016/j.ccr.2019.213076http://dx.doi.org/10.1016/j.ccr.2019.213076
Liu H, Liu H, Fan J, Guo J, Zeng J, Qiu F, Zhao Z. Adv Opt Mater, 2020, 8(21): 2001027. doi:10.1002/adom.202001027http://dx.doi.org/10.1002/adom.202001027
Zeng J, Guo J, Liu H, Zhao Z, Tang B Z. Adv Funct Mater, 2020, 30(17): 2000019. doi:10.1002/adfm.202000019http://dx.doi.org/10.1002/adfm.202000019
Li D, Yu J. Small, 2016, 12(47): 6478-6494. doi:10.1002/smll.201601484http://dx.doi.org/10.1002/smll.201601484
Zhu L, Zhou J, Xu G, Li C, Ling P, Liu B, Ju H. Chem Sci, 2018, 9(9): 2559-2566. doi:10.1039/c8sc00001hhttp://dx.doi.org/10.1039/c8sc00001h
Bhalla V, Gupta A, Kumar M. Dalton Trans, 2013, 42(13): 4464-4469. doi:10.1039/c3dt32546fhttp://dx.doi.org/10.1039/c3dt32546f
Wen J, Huang Z, Hu S, Li S, Li W, Wang X. J Hazard Mater, 2016, 318: 363-370. doi:10.1016/j.jhazmat.2016.07.004http://dx.doi.org/10.1016/j.jhazmat.2016.07.004
Gui S, Huang Y, Hu F, Jin Y, Zhang G, Yan L, Zhang D. Anal Chem, 2015, 87(3): 1470-1474. doi:10.1021/ac504153chttp://dx.doi.org/10.1021/ac504153c
Ye J H, Duan L, Yan C, Zhang W, He W. Tetrahedron Lett, 2012, 53(5): 593-596. doi:10.1016/j.tetlet.2011.11.107http://dx.doi.org/10.1016/j.tetlet.2011.11.107
Li Y, Yu H, Shao G, Gan F. J Photochem Photobiol A, 2015, 301: 14-19. doi:10.1016/j.jphotochem.2014.12.013http://dx.doi.org/10.1016/j.jphotochem.2014.12.013
Wei T T, Zhang J, Mao G J, Zhang X B, Ran Z J, Tan W, Yu R. Anal Methods, 2013, 5(16): 3909-3914. doi:10.1039/c3ay40354hhttp://dx.doi.org/10.1039/c3ay40354h
Wang X, Hu J, Liu T, Zhang G, Liu S. J Mater Chem, 2012, 22(17): 8622-8628. doi:10.1039/c2jm16510dhttp://dx.doi.org/10.1039/c2jm16510d
Xu L, Jiang L, Drechsler M, Sun Y, Liu Z, Huang J, Tang B Z. J Am Chem Soc, 2014, 136(5): 1942-1947. doi:10.1021/ja410443nhttp://dx.doi.org/10.1021/ja410443n
Xu H, Wang H, Zhou S, Xiao L, Yan Y, Yuan Q. RSC Adv, 2015, 5(128): 106061-106067. doi:10.1039/c5ra20198ehttp://dx.doi.org/10.1039/c5ra20198e
Liu L, Zhang G, Xiang J, Zhang D, Zhu D. Org Lett, 2008, 10(20): 4581-4584. doi:10.1021/ol801855shttp://dx.doi.org/10.1021/ol801855s
Sun F, Zhang G, Zhang D, Xue L, Jiang H. Org Lett, 2011, 13(24): 6378-6381. doi:10.1021/ol2026735http://dx.doi.org/10.1021/ol2026735
Xue R, Han Y, Xiao Y, Huang J, Tang B Z, Yan Y. ACS Appl Nano Mater, 2017, 1(1): 122-131. doi:10.1021/acsanm.7b00050http://dx.doi.org/10.1021/acsanm.7b00050
Yu G, Cook T R, Li Y, Yan X, Wu D, Shao L, Shen J. Proc Natl Acad Sci USA, 2016, 113(48): 13720-13725. doi:10.1073/pnas.1616836113http://dx.doi.org/10.1073/pnas.1616836113
Yan X, Cook T R, Wang P, Huang F, Stang P J. Nat Chem, 2015, 7(4): 342-348. doi:10.1038/nchem.2201http://dx.doi.org/10.1038/nchem.2201
Wang M, Zheng Y-R, Ghosh K, Stang P J. J Am Chem Soc, 2010, 132(18): 6282-6283. doi:10.1021/ja100889hhttp://dx.doi.org/10.1021/ja100889h
Lu C, Zhang M, Tang D, Yan X, Zhang Z, Zhou Z, Song B. J Am Chem Soc, 2018, 140(24): 7674-7680. doi:10.1021/jacs.8b03781http://dx.doi.org/10.1021/jacs.8b03781
Chen L J, Ren Y Y, Wu N W, Sun B, Ma J Q, Zhang L, Tan H. J Am Chem Soc, 2015, 137(36): 11725-11735. doi:10.1021/jacs.5b06565http://dx.doi.org/10.1021/jacs.5b06565
Yin G Q, Wang H, Wang X Q, Song B, Chen L J, Wang L, Hao X Q. Nat Commun, 2018, 9(1): 567-577. doi:10.1038/s41467-018-02959-whttp://dx.doi.org/10.1038/s41467-018-02959-w
Yan X, Wang H, Hauke C E, Cook T R, Wang M, Saha M L, Zhou Z. J Am Chem Soc, 2015, 137(48): 15276-15286. doi:10.1021/jacs.5b10130http://dx.doi.org/10.1021/jacs.5b10130
Cui Y, Yue Y, Qian G, Chen B. Chem Rev, 2012, 112(2): 1126-1162. doi:10.1021/cr200101dhttp://dx.doi.org/10.1021/cr200101d
Hu Z, Deibert B J, Li J. Chem Soc Rev, 2014, 43(16): 5815-5840. doi:10.1039/c4cs00010bhttp://dx.doi.org/10.1039/c4cs00010b
Shustova N B, McCarthy B D, Dinca M. J Am Chem Soc, 2011, 133(50): 20126-20129. doi:10.1021/ja209327qhttp://dx.doi.org/10.1021/ja209327q
Shustova N B, Cozzolino A F, Reineke S, Baldo M, Dinca M. J Am Chem Soc, 2013, 135(36): 13326-13329. doi:10.1021/ja407778ahttp://dx.doi.org/10.1021/ja407778a
Wei Z, Gu Z Y, Arvapally R K, Chen Y P, McDougald R N, Jr., Ivy J F, Yakovenko A A. J Am Chem Soc, 2014, 136(23): 8269-8276. doi:10.1021/ja5006866http://dx.doi.org/10.1021/ja5006866
Zhang M, Feng G, Song Z, Zhou Y P, Chao H Y, Yuan D, Tan T T. J Am Chem Soc, 2014, 136(20): 7241-7244. doi:10.1021/ja502643phttp://dx.doi.org/10.1021/ja502643p
Li Q Y, Ma Z, Zhang W Q, Xu J L, Wei W, Lu H, Zhao X. Chem Commun, 2016, 52(75): 11284-11287. doi:10.1039/c6cc04997dhttp://dx.doi.org/10.1039/c6cc04997d
Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J Am Chem Soc, 2014, 136(45): 15885-15888. doi:10.1021/ja5092936http://dx.doi.org/10.1021/ja5092936
Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. J Am Chem Soc, 2016, 138(18): 5797-5800. doi:10.1021/jacs.6b02700http://dx.doi.org/10.1021/jacs.6b02700
Wang P, Yan X, Huang F. Chem Commun, 2014, 50(39): 5017-5019. doi:10.1039/c4cc01560fhttp://dx.doi.org/10.1039/c4cc01560f
Bai W, Wang Z Y, Tong J Q, Mei J, Qin A J, Sun J Z, Tang B Z. Chem Commun, 2015, 51(6): 1089-1091. doi:10.1039/c4cc06510ghttp://dx.doi.org/10.1039/c4cc06510g
Liu H, Zhang Z, Zhao Y, Zhou Y, Xue B, Han Y, Wang Y. J Mater Chem B, 2019, 7(9): 1435-1441. doi:10.1039/c8tb03206hhttp://dx.doi.org/10.1039/c8tb03206h
Du X, Hao H, Qin A, Tang B Z. Dyes Pigments, 2020, 180: 108413. doi:10.1016/j.dyepig.2020.108413http://dx.doi.org/10.1016/j.dyepig.2020.108413
Hao Y Y, Liu L, Zhang L L, Huang Q L, Wang F, Li J, Xu J Q, Wang L H. Nucl Sci Technol, 2018, 29(10): 138. doi:10.1007/s41365-018-0486-xhttp://dx.doi.org/10.1007/s41365-018-0486-x
Zhu D, Zhao D X, Huang J X, Li J, Zuo X L, Wang L H, Fan C H. Nucl Sci Technol, 2018, 29(1): 5. doi:10.1007/s41365-017-0348-yhttp://dx.doi.org/10.1007/s41365-017-0348-y
Lou X, Leung C W T, Dong C, Hong Y, Chen S, Zhao E, Lam J W Y. RSC Adv, 2014, 4(63): 33307-33311. doi:10.1039/c4ra05765ahttp://dx.doi.org/10.1039/c4ra05765a
Zhao Y Y, Yu C Y Y, Kwok R T K, Chen Y L, Chen S J, Lam J W Y, Tang B Z. J Mater Chem B, 2015, 3(25): 4993-4996. doi:10.1039/c5tb00458fhttp://dx.doi.org/10.1039/c5tb00458f
Li S, Langenegger S M, Haner R. Chem Commun, 2013, 49(52): 5835-5837. doi:10.1039/c3cc42706dhttp://dx.doi.org/10.1039/c3cc42706d
Lu D, He L, Wang Y, Xiong M, Hu M, Liang H, Huan S. Talanta, 2017, 167: 550-556. doi:10.1016/j.talanta.2017.02.064http://dx.doi.org/10.1016/j.talanta.2017.02.064
Xiao F, Chen Z, Wei Z, Tian L. Adv Sci, 2020, 7 (16): 2001048. doi:10.1002/advs.202001048http://dx.doi.org/10.1002/advs.202001048
Zhu L, Li Y, Zhang L, Wen Y, Ju H, Lei J. Anal Chim Acta, 2020, 1094: 130-135. doi:10.1016/j.aca.2019.10.010http://dx.doi.org/10.1016/j.aca.2019.10.010
Chen J, Jiang H, Zhou H, Hu Z, Niu N, Shahzad S A, Yu C. Chem Commun, 2017, 53(15): 2398-2401. doi:10.1039/c7cc00122chttp://dx.doi.org/10.1039/c7cc00122c
Ying Y L, Li Y J, Mei J, Gao R, Hu Y X, Long Y T, Tian H. Nat Commun, 2018, 9(1): 3657-3662. doi:10.1038/s41467-018-05832-yhttp://dx.doi.org/10.1038/s41467-018-05832-y
Yan X, Wei P, Liu Y, Wang M, Chen C, Zhao J, Li G, Stang P J. J Am Chem Soc, 2019, 141(24): 9673-9679. doi:10.1021/jacs.9b03885http://dx.doi.org/10.1021/jacs.9b03885
Schroeder T, Scheible M B, Steiner F, Vogelsang J, Tinnefeld P. Nano Lett, 2019, 19(2): 1275-1281. doi:10.1021/acs.nanolett.8b04845http://dx.doi.org/10.1021/acs.nanolett.8b04845
Woehrstein J B, Strauss M T, Ong L L, Wei B, Zhang D Y, Jungmann R, Yin P. Sci Adv, 2017, 3(6): 1602128. doi:10.1126/sciadv.1602128http://dx.doi.org/10.1126/sciadv.1602128
Li J, Dai J, Jiang S, Xie M, Zhai T, Guo L, Cao S, Xing S, Qu Z, Zhao Y, Wang F, Yang Y, Liu L, Zuo X, Wang L, Yan H, Fan C. Nat Commun, 2020, 11(1): 2185. doi:10.1038/s41467-020-16112-zhttp://dx.doi.org/10.1038/s41467-020-16112-z
Wade O K, Woehrstein J B, Nickels P C, Strauss S, Stehr F, Stein J, Schueder F, Strauss M T, Ganji M, Schnitzbauer J, Grabmayr H, Yin P, Schwille P, Jungmann R. Nano Lett, 2019, 19(4): 2641-2646. doi:10.1021/acs.nanolett.9b00508http://dx.doi.org/10.1021/acs.nanolett.9b00508
Niekamp S, Stuurman N, Vale R D. Nat Methods, 2020, 17(4): 437-441. doi:10.1038/s41592-020-0782-3http://dx.doi.org/10.1038/s41592-020-0782-3
Boulais E, Sawaya N P D, Veneziano R, Andreoni A, Banal J L, Kondo T, Mandal S, Lin S, Schlau-Cohen G S, Woodbury N W, Yan H, Aspuru-Guzik A, Bathe M. Nat Mater, 2018, 17(2): 159-166. doi:10.1038/nmat5033http://dx.doi.org/10.1038/nmat5033
Zhou X, Mandal S, Jiang S, Lin S, Yang J, Liu Y, Whitten D G, Woodbury N W, Yan H. J Am Chem Soc, 2019, 141(21): 8473-8481. doi:10.1021/jacs.9b01548http://dx.doi.org/10.1021/jacs.9b01548
Jiang Q, Xu X, Yin P A, Ma K, Zhen Y, Duan P, Peng Q, Chen W Q, Ding B. J Am Chem Soc, 2019, 141 (24): 9490-9494. doi:10.1021/jacs.9b03305http://dx.doi.org/10.1021/jacs.9b03305
Zhai T T, Li Q, Shen J L, Li J, Fan C H. Aggregate, 2020, 1(1): 107-116. doi:10.1002/agt2.8http://dx.doi.org/10.1002/agt2.8
0
浏览量
101
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构