浏览全部资源
扫码关注微信
吉林大学化学学院 超分子结构与材料国家重点实验室 长春 130012
[ "董庆锋,男,1984年生. 吉林大学化学学院超分子结构与材料国家重点实验室教授,博士生导师. 2007年获吉林大学化学学院学士学位,2013年于吉林大学获得博士学位,同年至2016年在美国内布拉斯加大学林肯分校从事博士后研究. 2016年入职吉林大学超分子结构与材料国家重点实验室. 2019及2020年连续入选全球高被引学者. 研究方向为有机金属卤素晶体材料及光电器件." ]
纸质出版日期:2021-08-20,
网络出版日期:2021-06-24,
收稿日期:2021-03-06,
修回日期:2021-04-28,
扫 描 看 全 文
康一飞,王安然,李容等.高机械稳定性的柔性钙钛矿太阳能电池的研究进展[J].高分子学报,2021,52(08):920-937.
Kang Yi-fei,Wang An-ran,Li Rong,et al.A Review: Flexible Perovskite Solar Cells towards High Mechanical Stability[J].ACTA POLYMERICA SINICA,2021,52(08):920-937.
康一飞,王安然,李容等.高机械稳定性的柔性钙钛矿太阳能电池的研究进展[J].高分子学报,2021,52(08):920-937. DOI: 10.11777/j.issn1000-3304.2021.21069.
Kang Yi-fei,Wang An-ran,Li Rong,et al.A Review: Flexible Perovskite Solar Cells towards High Mechanical Stability[J].ACTA POLYMERICA SINICA,2021,52(08):920-937. DOI: 10.11777/j.issn1000-3304.2021.21069.
柔性钙钛矿太阳能电池是当前最高效的柔性光伏技术之一,应用前景广阔. 但器件的机械稳定性制约了其综合稳定性及安全可靠性. 本文综合评述了近年来国内外研究团队围绕提升柔性钙钛矿太阳能电池机械性能的研究进展,从柔性基底优化、新型柔性透明电极开发、晶粒调控、晶界改性、界面工程等不同角度分析总结了柔性钙钛矿太阳能电池机械稳定性的优化方案及进展,对柔性钙钛矿太阳能电池的瓶颈及挑战进行了总结和建议.
Flexible solar cells hold broad application prospects in the fields of space energy
outdoor equipment
building integration photovoltaic
and wearable smart devices due to their light weight
flexible and wearable properties
which can be easily integrated with different surfaces with varied shapes. The high defect tolerance of perovskite materials allows functional doping for adjustable electrical and mechanical properties. Combined with its solution processability and excellent charge transport characteristics
the perovskite materials showed unique advantages as flexible devices. Currently
the reported efficiency of single-junction flexible perovskite solar cells has exceeded 20%
which is one of the most efficient flexible photovoltaic technologies. However
the intrinsic brittle ceramic properties of the perovskite polycrystalline film induced poor mechanical bending stability in devices
which is the bottleneck before its application. Meanwhile
the stress mismatch across multiple functional layers in devices during bending induce rapid device degradation
which restricts the overall stability and reliability of the flexible perovskite solar cells. Recently
great efforts have been made by researchers for high mechanical stability of flexible perovskite solar cells. This article comprehensively reviewed the research progress in improving the mechanical stability of flexible perovskite solar cells in recent years by optimizing flexible substrates
developing new flexible transparent electrodes
adjusting crystal grains
modifying grain boundaries and interfacial engineering. Besides
the challenges and prospection of flexible perovskite solar cells are also analyzed.
柔性钙钛矿太阳能电池机械稳定性弯折稳定性拉伸稳定性
Flexible perovskite solar cellsMechanical stabilityBending stabilityStretchability
Hwang I, Um H D, Kim B S, Wober M, Seo K. Energy Environ Sci, 2018, 11(3): 641-647. doi:10.1039/c7ee03340khttp://dx.doi.org/10.1039/c7ee03340k
Ramanujam J, Singh U P. Energy Environ Sci, 2017, 10(6): 1306-1319. doi:10.1039/c7ee00826khttp://dx.doi.org/10.1039/c7ee00826k
Li W, Tan J M R, Leow S W, Lie S, Magdassi S, Wong L H. Energy Technol, 2018, 6(1): 46-59. doi:10.1002/ente.201700734http://dx.doi.org/10.1002/ente.201700734
Sun Y, Meng L, Wan X, Guo Z, Ke X, Sun Z, Zhao K, Zhang H, Li C, Chen Y. Adv Funct Mater, 2021, 31(16): 2010000. doi:10.1002/adfm.202010000http://dx.doi.org/10.1002/adfm.202010000
Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulovic V, Shin S S, Bawendi M G, Seo J. Nature, 2021, 590(7847): 587-593. doi:10.1038/s41586-021-03285-whttp://dx.doi.org/10.1038/s41586-021-03285-w
Chen Y, Chen T, Dai L. Adv Mater, 2015, 27(6): 1053-1059. doi:10.1002/adma.201404147http://dx.doi.org/10.1002/adma.201404147
Richards B S. Sol Energy Mater Sol Cells, 2006, 90(15): 2329-2337. doi:10.1016/j.solmat.2006.03.035http://dx.doi.org/10.1016/j.solmat.2006.03.035
Lin Y, Shao Y, Dai J, Li T, Liu Y, Dai X, Xiao X, Deng Y, Gruverman A, Zeng X C, Huang J. Nat Commun, 2021, 12(1): 7. doi:10.1038/s41467-020-20110-6http://dx.doi.org/10.1038/s41467-020-20110-6
Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Gratzel M. Science, 2016, 354(6309): 206-209. doi:10.1126/science.aah5557http://dx.doi.org/10.1126/science.aah5557
Meng X, Cai Z, Zhang Y, Hu X, Xing Z, Huang Z, Huang Z, Cui Y, Hu T, Su M, Liao X, Zhang L, Wang F, Song Y, Chen Y. Nat Commun, 2020, 11(1): 3016. doi:10.1038/s41467-020-16831-3http://dx.doi.org/10.1038/s41467-020-16831-3
Hu X, Meng X, Zhang L, Zhang Y, Cai Z, Huang Z, Su M, Wang Y, Li M, Li F, Yao X, Wang F, Ma W, Chen Y, Song Y. Joule, 2019, 3(9): 2205-2218. doi:10.1016/j.joule.2019.06.011http://dx.doi.org/10.1016/j.joule.2019.06.011
Yoon J, Kim U, Yoo Y, Byeon J, Lee S K, Nam J S, Kim K, Zhang Q, Kauppinen E I, Maruyama S, Lee P, Jeon I. Adv Sci, 2021, 8(7): 2004092. doi:10.1002/advs.202004092http://dx.doi.org/10.1002/advs.202004092
Hu H, Ren Z, Fong P W K, Qin M, Liu D, Lei D, Lu X, Li G. Adv Funct Mater, 2019, 29(25): 1900092. doi:10.1002/adfm.201900092http://dx.doi.org/10.1002/adfm.201900092
Wang H, Huang Z, Xiao S, Meng X, Xing Z, Rao L, Gong C, Wu R, Hu T, Tan L, Hu X, Zhang S, Chen Y. J Mater Chem A, 2021, 9: 5759-5968. doi:10.1039/d0ta12067ghttp://dx.doi.org/10.1039/d0ta12067g
Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J. Adv Mater, 2014, 26(37): 6503-6509. doi:10.1002/adma.201401685http://dx.doi.org/10.1002/adma.201401685
Jung H S, Han G S, Park N G, Ko M J. Joule, 2019, 3(8): 1850-1880. doi:10.1016/j.joule.2019.07.023http://dx.doi.org/10.1016/j.joule.2019.07.023
Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A. Nat Commun, 2017, 8: 15218. doi:10.1038/ncomms15218http://dx.doi.org/10.1038/ncomms15218
Christians J A, Miranda Herrera P A, Kamat P V. J Am Chem Soc, 2015, 137(4): 1530-1538. doi:10.1021/ja511132ahttp://dx.doi.org/10.1021/ja511132a
Lee G, Kim M C, Choi Y W, Ahn N, Jang J, Yoon J, Kim S M, Lee J G, Kang D, Jung H S, Choi M. Energy Environ Sci, 2019, 12(10): 3182-3191. doi:10.1039/c9ee01944hhttp://dx.doi.org/10.1039/c9ee01944h
Jia C, Zhao X, Lai Y H, Zhao J, Wang P C, Liou D S, Wang P, Liu Z, Zhang W, Chen W, Chu Y H, Li J. Nano Energy, 2019, 60: 476-484. doi:10.1016/j.nanoen.2019.03.053http://dx.doi.org/10.1016/j.nanoen.2019.03.053
Tavakoli M M, Lin Q, Leung S F, Lui G C, Lu H, Li L, Xiang B, Fan Z. Nanoscale, 2016, 8(7): 4276-4283. doi:10.1039/c5nr08836dhttp://dx.doi.org/10.1039/c5nr08836d
Qiu L, Deng J, Lu X, Yang Z, Peng H. Angew Chem Int Ed, 2014, 53(39): 10425-10428. doi:10.1002/anie.201404973http://dx.doi.org/10.1002/anie.201404973
Qiu L, He S, Yang J, Deng J, Peng H. Small, 2016, 12(18): 2419-2424. doi:10.1002/smll.201600326http://dx.doi.org/10.1002/smll.201600326
Yang D, Yang R, Zhang J, Yang Z, Liu S, Li C. Energy Environ Sci, 2015, 8(11): 3208-3214. doi:10.1039/c5ee02155chttp://dx.doi.org/10.1039/c5ee02155c
Wang C, Guan L, Zhao D, Yu Y, Grice C R, Song Z, Awni R A, Chen J, Wang J, Zhao X, Yan Y. ACS Energy Lett, 2017, 2(9): 2118-2124. doi:10.1021/acsenergylett.7b00644http://dx.doi.org/10.1021/acsenergylett.7b00644
Yang D, Yang R, Ren X, Zhu X, Yang Z, Li C, Liu S F. Adv Mater, 2016, 28(26): 5206-5213. doi:10.1002/adma.201600446http://dx.doi.org/10.1002/adma.201600446
Bi C, Chen B, Wei H, DeLuca S, Huang J. Adv Mater, 2017, 29(30): 1605900. doi:10.1002/adma.201605900http://dx.doi.org/10.1002/adma.201605900
Sakamoto K, Kuwae H, Kobayashi N, Nobori A, Shoji S, Mizuno J. Sci Rep, 2018, 8(1): 2825. doi:10.1038/s41598-018-20978-xhttp://dx.doi.org/10.1038/s41598-018-20978-x
Königer T, Münstedt H. Meas Sci Technol, 2008, 19(5): 055709. doi:10.1088/0957-0233/19/5/055709http://dx.doi.org/10.1088/0957-0233/19/5/055709
Na S I, Kim S S, Jo J, Kim D Y. Adv Mater, 2008, 20(21): 4061-4067. doi:10.1002/adma.200800338http://dx.doi.org/10.1002/adma.200800338
Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato J P. Nanotechnology, 2013, 24(45): 452001. doi:10.1088/0957-4484/24/45/452001http://dx.doi.org/10.1088/0957-4484/24/45/452001
Xie M, Wang J, Kang J, Zhang L, Sun X, Han K, Luo Q, Lin J, Shi L, Ma C Q. Flex Print Electron, 2019, 4(3): 34002. doi:10.1088/2058-8585/ab2f37http://dx.doi.org/10.1088/2058-8585/ab2f37
Ma P, Lou Y, Cong S, Lu Z, Zhu K, Zhao J, Zou G. Adv Energy Mater, 2020, 10(8): 1903357. doi:10.1002/aenm.201903357http://dx.doi.org/10.1002/aenm.201903357
Lee M, Ko Y, Min B K, Jun Y. ChemSusChem, 2016, 9(1): 31-35. doi:10.1002/cssc.201501332http://dx.doi.org/10.1002/cssc.201501332
Di Giacomo F, Fakharuddin A, Jose R, Brown T M. Energy Environ Sci, 2016, 9(10): 3007-3035. doi:10.1039/c6ee01137chttp://dx.doi.org/10.1039/c6ee01137c
Liu Z, You P, Xie C, Tang G, Yan F. Nano Energy, 2016, 28: 151-157. doi:10.1016/j.nanoen.2016.08.038http://dx.doi.org/10.1016/j.nanoen.2016.08.038
Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung H S, Choi M. Energy Environ Sci, 2017, 10(1): 337-345. doi:10.1039/c6ee02650hhttp://dx.doi.org/10.1039/c6ee02650h
Chen Z, Cotterell B, Wang W. Eng Fract Mech, 2002, 69(5): 597-603. doi:10.1016/s0013-7944(01)00104-7http://dx.doi.org/10.1016/s0013-7944(01)00104-7
Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321(5887): 385-388. doi:10.1126/science.1157996http://dx.doi.org/10.1126/science.1157996
Heo J H, Shin D H, Jang M H, Lee M L, Kang M G, Im S H. J Mater Chem A, 2017, 5(40): 21146-21152. doi:10.1039/c7ta06465ahttp://dx.doi.org/10.1039/c7ta06465a
Jeon I, Yoon J, Ahn N, Atwa M, Delacou C, Anisimov A, Kauppinen E I, Choi M, Maruyama S, Matsuo Y. J Phys Chem Lett, 2017, 8(21): 5395-5401. doi:10.1021/acs.jpclett.7b02229http://dx.doi.org/10.1021/acs.jpclett.7b02229
Wang X, Li Z, Xu W, Kulkarni S A, Batabyal S K, Zhang S, Cao A, Wong L H. Nano Energy, 2015, 11: 728-735. doi:10.1016/j.nanoen.2014.11.042http://dx.doi.org/10.1016/j.nanoen.2014.11.042
Deng B, Hsu P C, Chen G, Chandrashekar B N, Liao L, Ayitimuda Z, Wu J, Guo Y, Lin L, Zhou Y, Aisijiang M, Xie Q, Cui Y, Liu Z, Peng H. Nano Lett, 2015, 15(6): 4206-4213. doi:10.1021/acs.nanolett.5b01531http://dx.doi.org/10.1021/acs.nanolett.5b01531
Zuo C, Ding L. Nanoscale, 2014, 6(17): 9935-9938. doi:10.1039/c4nr02425ghttp://dx.doi.org/10.1039/c4nr02425g
Zhao Y, Zhu K. J Phys Chem C, 2014, 118(18): 9412-9418. doi:10.1021/jp502696whttp://dx.doi.org/10.1021/jp502696w
Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F. ACS Appl Mater Interfaces, 2015, 7(8): 4955-4961. doi:10.1021/acsami.5b00052http://dx.doi.org/10.1021/acsami.5b00052
Jo J W, Seo M S, Park M, Kim J Y, Park J S, Han I K, Ahn H, Jung J W, Sohn B H, Ko M J, Son H J. Adv Funct Mater, 2016, 26(25): 4464-4471. doi:10.1002/adfm.201600746http://dx.doi.org/10.1002/adfm.201600746
Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q. Nat Commun, 2016, 7: 10228. doi:10.1038/ncomms10228http://dx.doi.org/10.1038/ncomms10228
Xue Q, Hu Z, Sun C, Chen Z, Huang F, Yip H L, Cao Y. RSC Adv, 2015, 5(1): 775-783. doi:10.1039/c4ra11739ehttp://dx.doi.org/10.1039/c4ra11739e
Bella F, Griffini G, Correa-Baena J P, Saracco G, Gratzel M, Hagfeldt A, Turri S, Gerbaldi C. Science, 2016, 354(6309): 203-206. doi:10.1126/science.aah4046http://dx.doi.org/10.1126/science.aah4046
Bi D, Yi C, Luo J, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M. Nat Energy, 2016, 1(10): 16142. doi:10.1038/nenergy.2016.142http://dx.doi.org/10.1038/nenergy.2016.142
Guo Y, Shoyama K, Sato W, Nakamura E. Adv Energy Mater, 2016, 6(6): 1502317. doi:10.1002/aenm.201502317http://dx.doi.org/10.1002/aenm.201502317
Huang K, Peng Y, Gao Y, Shi J, Li H, Mo X, Huang H, Gao Y, Ding L, Yang J. Adv Energy Mater, 2019, 9(44): 1901419. doi:10.1002/aenm.201901419http://dx.doi.org/10.1002/aenm.201901419
Wang Y, Yu Y, Guo J, Zhang Z, Zhang X, Zhao Y. Adv Funct Mater, 2020, 30(32): 2000151. doi:10.1002/adfm.202000151http://dx.doi.org/10.1002/adfm.202000151
Xu G, Xue R, Chen W, Zhang J, Zhang M, Chen H, Cui C, Li H, Li Y, Li Y. Adv Energy Mater, 2018, 8(12): 1703054. doi:10.1002/aenm.201703054http://dx.doi.org/10.1002/aenm.201703054
Huang Z, Hu X, Liu C, Tan L, Chen Y. Adv Funct Mater, 2017, 27(41): 1703061. doi:10.1002/adfm.201703061http://dx.doi.org/10.1002/adfm.201703061
Feng J, Zhu X, Yang Z, Zhang X, Niu J, Wang Z, Zuo S, Priya S, Liu S F, Yang D. Adv Mater, 2018, 30(35): e1801418. doi:10.1002/adma.201801418http://dx.doi.org/10.1002/adma.201801418
Jiang N R, Wang Y F, Dong Q F, Ge C D, Yang Z Q, Yin D, Liu Y F, Bi Y G, Feng J, Sun H B. Solar RRL, 2021, 5(4): 2000821. doi:10.1002/solr.202000821http://dx.doi.org/10.1002/solr.202000821
Chung J, Shin S S, Hwang K, Kim G, Kim K W, Lee D S, Kim W, Ma B S, Kim Y K, Kim T S, Seo J. Energy Environ Sci, 2020, 13(12): 4854-4861. doi:10.1039/d0ee02164dhttp://dx.doi.org/10.1039/d0ee02164d
Hu X, Huang Z, Li F, Su M, Huang Z, Zhao Z, Cai Z, Yang X, Meng X, Li P, Wang Y, Li M, Chen Y, Song Y. Energy Environ Sci, 2019, 12(3): 979-987. doi:10.1039/c8ee01799ahttp://dx.doi.org/10.1039/c8ee01799a
Jing H, Peng R, Ma R M, He J, Zhou Y, Yang Z, Li C Y, Liu Y, Guo X, Zhu Y, Wang D, Su J, Sun C, Bao W, Wang M. Nano Lett, 2020, 20(10): 7144-7151. doi:10.1021/acs.nanolett.0c02468http://dx.doi.org/10.1021/acs.nanolett.0c02468
Lei Y, Chen Y, Zhang R, Li Y, Yan Q, Lee S, Yu Y, Tsai H, Choi W, Wang K, Luo Y, Gu Y, Zheng X, Wang C, Wang C, Hu H, Li Y, Qi B, Lin M, Zhang Z, Dayeh S A, Pharr M, Fenning D P, Lo Y H, Luo J, Yang K, Yoo J, Nie W, Xu S. Nature, 2020, 583(7818): 790-795. doi:10.1038/s41586-020-2526-zhttp://dx.doi.org/10.1038/s41586-020-2526-z
Huang Z, Hu X, Liu C, Tan L, Chen Y. Adv Funct Mater, 2017, 27(41): 1770242. doi:10.1002/adfm.201703061http://dx.doi.org/10.1002/adfm.201703061
Xiong H, DeLuca G, Rui Y, Zhang B, Li Y, Zhang Q, Wang H, Reichmanis E. ACS Appl Mater Interfaces, 2018, 10(41): 35385-35394. doi:10.1021/acsami.8b04236http://dx.doi.org/10.1021/acsami.8b04236
Yao Z, Qu D, Guo Y, Huang H. Org Electron, 2019, 70: 205-210. doi:10.1016/j.orgel.2019.04.029http://dx.doi.org/10.1016/j.orgel.2019.04.029
Li M, Yang Y G, Wang Z K, Kang T, Wang Q, Turren-Cruz S H, Gao X Y, Hsu C S, Liao L S, Abate A. Adv Mater, 2019, 31(25): e1901519. doi:10.1002/adma.201901519http://dx.doi.org/10.1002/adma.201901519
Ge C, Yang Z, Liu X, Song Y, Wang A, Dong Q. CCS Chem, 2020, 2: 2035-2044
Guo Y, Cheng J, Liu L, Tan Z. Mater Lett, 2021, 292: 129559. doi:10.1016/j.matlet.2021.129559http://dx.doi.org/10.1016/j.matlet.2021.129559
Meng X, Xing Z, Hu X, Huang Z, Hu T, Tan L, Li F, Chen Y. Angew Chem Int Ed, 2020, 59(38): 16602-16608. doi:10.1002/anie.202003813http://dx.doi.org/10.1002/anie.202003813
Hu X, Meng X, Yang X, Huang Z, Xing Z, Li P, Tan L, Su M, Li F, Chen Y, Song Y. Sci Bull, 2021, 66(6): 527-535. doi:10.1016/j.scib.2020.10.023http://dx.doi.org/10.1016/j.scib.2020.10.023
Peng J, Walter D, Ren Y, Tebyetekerwa M, Wu Y, Duong T, Lin Q, Li J, Lu T, Mahmud M A, Lem O L C, Zhao S, Liu W, Liu Y, Shen H, Li L, Kremer F, Nguyen H T, Choi D Y, Weber K J, Catchpole K R, White T P. Science, 2021, 371(6527): 390-395. doi:10.1126/science.abb8687http://dx.doi.org/10.1126/science.abb8687
Hu X, Huang Z, Zhou X, Li P, Wang Y, Huang Z, Su M, Ren W, Li F, Li M, Chen Y, Song Y. Adv Mater, 2017, 29(42): 1703236. doi:10.1002/adma.201703236http://dx.doi.org/10.1002/adma.201703236
Dong Q, Zhu C, Chen M, Jiang C, Guo J, Feng Y, Dai Z, Yadavalli S K, Hu M, Cao X, Li Y, Huang Y, Liu Z, Shi Y, Wang L, Padture N P, Zhou Y. Nat Commun, 2021, 12(1): 973. doi:10.1038/s41467-021-21292-3http://dx.doi.org/10.1038/s41467-021-21292-3
Wang Z, Zeng L, Zhang C, Lu Y, Qiu S, Wang C, Liu C, Pan L, Wu S, Hu J, Liang G, Fan P, Egelhaaf H J, Brabec C J, Guo F, Mai Y. Adv Funct Mater, 2020, 30(32): 2001240. doi:10.1002/adfm.202001240http://dx.doi.org/10.1002/adfm.202001240
Zhao L, Rolston N, Lee K M, Zhao X, Reyes-Martinez M A, Tran N L, Yeh Y W, Yao N, Scholes G D, Loo Y L, Selloni A, Dauskardt R H, Rand B P. Adv Funct Mater, 2018, 28(31): 1802060. doi:10.1002/adfm.201802060http://dx.doi.org/10.1002/adfm.201802060
Shen Y, Li M N, Li Y, Xie F M, Wu H Y, Zhang G H, Chen L, Lee S T, Tang J X. ACS Nano, 2020, 14(5): 6107-6116. doi:10.1021/acsnano.0c01908http://dx.doi.org/10.1021/acsnano.0c01908
Wang Z, Li Z, Zhou D, Yu J. Appl Phys Lett, 2017, 111(23): 233304. doi:10.1063/1.5010245http://dx.doi.org/10.1063/1.5010245
Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W. Adv Mater, 2017, 29(12): 1605587. doi:10.1002/adma.201605587http://dx.doi.org/10.1002/adma.201605587
Liu Y, Zhang Y, Yang Z, Ye H, Feng J, Xu Z, Zhang X, Munir R, Liu J, Zuo P, Li Q, Hu M, Meng L, Wang K, Smilgies D M, Zhao G, Xu H, Yang Z, Amassian A, Li J, Zhao K, Liu S F. Nat Commun, 2018, 9(1): 5302. doi:10.1038/s41467-018-07440-2http://dx.doi.org/10.1038/s41467-018-07440-2
Zhang T, Wang F, Zhang P, Wang Y, Chen H, Li J, Wu J, Chen L, Chen Z D, Li S. Nanoscale, 2019, 11(6): 2871-2877. doi:10.1039/c8nr09900fhttp://dx.doi.org/10.1039/c8nr09900f
Lim S, Ha M, Lee Y, Ko H. Adv Opt Mater, 2018, 6(21): 1800615. doi:10.1002/adom.201800615http://dx.doi.org/10.1002/adom.201800615
Zhao J, Zhao L, Deng Y, Xiao X, Ni Z, Xu S, Huang J. Nat Photon, 2020, 14(10): 612-617. doi:10.1038/s41566-020-0678-xhttp://dx.doi.org/10.1038/s41566-020-0678-x
0
浏览量
288
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构