浏览全部资源
扫码关注微信
1.中国科学院化学研究所 胶体、界面与化学热力学重点实验室 北京 100190
2.中国科学院大学 北京 100049
E-mail: jbli@iccas.ac.cn
纸质出版日期:2021-08-20,
网络出版日期:2021-06-17,
收稿日期:2021-03-14,
修回日期:2021-04-07,
扫 描 看 全 文
王克青,李自若,费进波等.脂质体的特异性识别与单颗粒电化学检测[J].高分子学报,2021,52(08):1024-1031.
Wang Ke-qing,Li Zi-ruo,Fei Jin-bo,et al.Specific Molecular Recognition of Liposome Nanoparticles and Single-particle Electrochemical Detection[J].ACTA POLYMERICA SINICA,2021,52(08):1024-1031.
王克青,李自若,费进波等.脂质体的特异性识别与单颗粒电化学检测[J].高分子学报,2021,52(08):1024-1031. DOI: 10.11777/j.issn1000-3304.2021.21083.
Wang Ke-qing,Li Zi-ruo,Fei Jin-bo,et al.Specific Molecular Recognition of Liposome Nanoparticles and Single-particle Electrochemical Detection[J].ACTA POLYMERICA SINICA,2021,52(08):1024-1031. DOI: 10.11777/j.issn1000-3304.2021.21083.
脂质体载药系统已在许多疾病的治疗中发挥重要作用. 体外构建并模拟脂质体与生物膜特异性识别相互作用,对于探索脂质体在生物体内的稳定性,开发新型高效和智能化药物递送系统具有重要的现实意义. 本文通过分子组装技术构筑了稳定的磷脂囊泡-脂质体,利用微加工技术制备金微电极,然后在其表面进行亲合素修饰,借助电化学工作站检测脂质体单颗粒的碰撞行为,以此建立一种检测脂质体在体外和生物体内存在的技术平台. 实验证明,在脂质体中引入生物素分子,通过与微电极表面的亲合素分子产生特异性识别,能显著增加单颗粒碰撞的频率和强度. 这些定量的数据为研究脂质体与生物膜动态互作提供了十分有效和准确的检测手段,为验证脂质体载药体系在生物内的稳定性和释放速率建立了新方法.
Liposomes delivery drug systems show obvious advantages in the treatment of many diseases. Constructing new types of liposome based drugs is of great importance to develop more efficient novel drug delivery systems. Herein
the present work demonstrated that Au microelectrode was chemically modified with avidin through Au-S bond (Avidin-S-Au microelectrode) and liposomes modified with the biotin (Biotin-liposome) were constructed through molecular assembly. Furthermore
an electrochemical detection device was constructed to recognize liposomes through single nanoparticle collision. Compared with pure liposomes
biotin modified liposome displayed a higher collision frequency and intensity with Avidin-S-Au microelectrode. Importantly
with the increasing concentration of biotin-liposome
the collision frequency increases as well. Taking the single liposome collision to the gold microelectrode into account
one can obtain quantitative information of the liposome size and concentration through the frequency and intensity of single nanoparticle collision. These findings represent an unusual case to achieve high sensitivity detection of individual liposomes with poor electrochemical activity and at very low concentration. The present work creates a simple and effective way to detect the stability of liposomes and their interaction with biomembranes.
脂质体超分子组装单颗粒碰撞电化学检测分子识别
LiposomeMolecular assemblySingle particle collisionElectrochemical detectionMolecular recognition
Rideau E, Dimova R, Schwille P, Wurm F R, Landfester K. Chem Soc Rev, 2018, 47(23): 8572-8610. doi:10.1039/c8cs00162fhttp://dx.doi.org/10.1039/c8cs00162f
Sun B B, Tao K, Jia Y, Yan X H, Zou Q L, Gazit E, Li J B. Chem Soc Rev, 2019, 48(16): 4387-4400. doi:10.1039/c9cs00085bhttp://dx.doi.org/10.1039/c9cs00085b
Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Science, 2012, 336(6080): 434-440. doi:10.1126/science.1215368http://dx.doi.org/10.1126/science.1215368
Qi W, Duan L, Wang K W, Yan X H, Cui Y, He Q, Li J B. Adv Mater, 2008, 20(3): 601-605. doi:10.1002/adma.200702155http://dx.doi.org/10.1002/adma.200702155
Jia Y, Li J B. Nat Rev Chem, 2019, 3: 361-374. doi:10.1038/s41570-019-0100-8http://dx.doi.org/10.1038/s41570-019-0100-8
Duan L, He Q, Wang K W, Yan X H, Cui Y, Möhwald H, Li J B. Angew Chem Int Ed, 2007, 46(37): 6996-7000. doi:10.1002/anie.200700331http://dx.doi.org/10.1002/anie.200700331
Xu Y Q, Fei J B, Li G L, Yuan T T, Li Y, Wang C L, Li X B, Li J B. Angew Chem Int Ed, 2017, 56(42): 12903-12907. doi:10.1002/anie.201706368http://dx.doi.org/10.1002/anie.201706368
Xu Y Q, Fei J B, Li G L, Yuan T T, Xu X, Wang C L, Li J B. Angew Chem Int Ed, 2018, 57(22): 6532-6535. doi:10.1002/anie.201802555http://dx.doi.org/10.1002/anie.201802555
Xu Y Q, Fei J B, Li G L, Yuan T T, Li J B. ACS Nano, 2017, 11(10): 10175-10183. doi:10.1021/acsnano.7b04747http://dx.doi.org/10.1021/acsnano.7b04747
Xu Y Q, Fei J B, Li G L, Yuan T T, Xu X, Li J B. Angew Chem Int Ed, 2019, 58(17): 5572-5576. doi:10.1002/anie.201813771http://dx.doi.org/10.1002/anie.201813771
Li Y, Fei J B, Li G L, Xie H M, Yang Y, Li J L, Xu Y Q, Sun B B, Xia J R, Fu X Q, Li J B. ACS Nano, 2018, 12(2): 1455-1461. doi:10.1021/acsnano.7b07841http://dx.doi.org/10.1021/acsnano.7b07841
Li Y, Feng X Y, Wang A H, Yang Y, Fei J B, Sun B B, Jia Y, Li J B. Angew Chem Int Ed, 2019, 58(3): 796-800. doi:10.1002/anie.201812582http://dx.doi.org/10.1002/anie.201812582
Li G L, Fei J B, Xu Y Q, Li J B. Adv Funct Mater, 2018, 28(13): 1706557. doi:10.1002/adfm.201706557http://dx.doi.org/10.1002/adfm.201706557
Li G L, Fei J B, Xu Y Q, Sun B B, Li J B. Angew Chem Int Ed, 2019, 58(4): 1110-1114. doi:10.1002/anie.201812552http://dx.doi.org/10.1002/anie.201812552
Xu X, Fei J B, Xu Y Q, Li G L, Dong W G, Xue H M, Li J B. Angew Chem Int Ed, 2021, 60(14): 7695-7698. doi:10.1002/anie.202016253http://dx.doi.org/10.1002/anie.202016253
Ariga K, Jia X F, Song J W, Hill J P, Leong D T, Jia Y, Li J B. Angew Chem Int Ed, 2020, 59(36): 15424-15446. doi:10.1002/anie.202000802http://dx.doi.org/10.1002/anie.202000802
Ariga K, Li J B. Adv Mater, 2016, 28(6): 987-988. doi:10.1002/adma.201505715http://dx.doi.org/10.1002/adma.201505715
Cheng W, Compton R G. ChemElectroChem, 2016, 3(12): 2017-2020. doi:10.1002/celc.201600396http://dx.doi.org/10.1002/celc.201600396
Hellberg D, Scholz F, Schauer F, Weitschies W. Electrochem Commun, 2002, 4(4): 305-309. doi:10.1016/s1388-2481(02)00279-5http://dx.doi.org/10.1016/s1388-2481(02)00279-5
Edwards M A, German S R, Dick J E, Bard A J, White H S. ACS Nano, 2015, 9(12): 12274-12282. doi:10.1021/acsnano.5b05554http://dx.doi.org/10.1021/acsnano.5b05554
Xiao X Y, Fan F R F, Zhou J P, Bard A J. J Am Chem Soc, 2008, 130(49): 16669-16677. doi:10.1021/ja8051393http://dx.doi.org/10.1021/ja8051393
Liu Y, Xu C, Yu P, Chen X W, Wang J H, Mao L Q. ChemElectroChem, 2018, 5(20): 2954-2962. doi:10.1002/celc.201800616http://dx.doi.org/10.1002/celc.201800616
Patrice F T, Qiu K, Ying Y L, Long Y T. Annu Rev Anal Chem, 2019, 12(1): 347-370. doi:10.1146/annurev-anchem-061318-114902http://dx.doi.org/10.1146/annurev-anchem-061318-114902
Nguyen T H T, Lee J, Kim H Y, Nam K M, Kim B K. Biosens Bioelectron, 2020, 151: 111999. doi:10.1016/j.bios.2019.111999http://dx.doi.org/10.1016/j.bios.2019.111999
Lan W J, White H S. ACS Nano, 2012, 6(2): 1757-1765. doi:10.1021/nn2047636http://dx.doi.org/10.1021/nn2047636
Toh H S, Compton R G. Chem Sci, 2015, 6: 5053-5058. doi:10.1039/c5sc01635ehttp://dx.doi.org/10.1039/c5sc01635e
Xu W, Zou G Q, Hou H S, Ji X B. Small, 2019, 15(32): 1804908. doi:10.1002/smll.201804908http://dx.doi.org/10.1002/smll.201804908
Laborda E, Molina A, Batchelor-McAuley C, Compton R G. ChemElectroChem, 2018, 5(3): 410-417. doi:10.1002/celc.201701000http://dx.doi.org/10.1002/celc.201701000
Deng Z J, Elattar R, Maroun F, Renault C. Anal Chem, 2018, 90(21): 12923-12929. doi:10.1021/acs.analchem.8b03550http://dx.doi.org/10.1021/acs.analchem.8b03550
Cussler E L. Diffusion: Mass Transfer in Fluid Systems. Cambridge: Cambridge University Press, 2009. doi:10.1017/cbo9780511805134http://dx.doi.org/10.1017/cbo9780511805134
Bard A J, Faulkner L R, Leddy J, Zoski C G. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, 1980. doi:10.1201/9781315270302http://dx.doi.org/10.1201/9781315270302
Li Junbai(李峻柏),Wang Keqing(王克青),Zhao Jie(赵洁),Fu Meifang(付梅芳). China patent,ZL 201910380258. 1. 2020-06-16
0
浏览量
46
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构