浏览全部资源
扫码关注微信
超常条件材料物理与化学教育部重点实验室 陕西省高分子科学与技术重点实验室 西北工业大学化学与化工学院 西安 710072
[ "孔杰,男,1976年生. 1995~2004年于西北工业大学理学院获得学士、硕士、博士学位;2006~2009年在香港理工大学做研究助理、博士后,2009~2010年作为洪堡学者在德国拜罗伊特大学A.H.E.Müller组访问研究;2020年至今,西北工业大学理学院、化学与化工学院教授. 兼任中国复合材料学会介电高分子复合材料与应用专业委员会常务副主任、学术交流工作委员会副主任(2016至今). 2019年作为带头人入选陕西省“三秦学者”创新团队,2020年当选英国材料矿物与矿业学会会士,获国家杰出青年科学基金、高等学校科学研究优秀成果奖(科学技术)技术发明二等奖(排名第一). 主要从事超支化高分子设计合成及在陶瓷前驱体、高温吸波材料、透波介电材料、增材制造中的应用研究." ]
纸质出版日期:2021-11-20,
收稿日期:2021-03-16,
修回日期:2021-05-31,
扫 描 看 全 文
骆春佳,孔杰.可瓷化高分子合成与功能化进展[J].高分子学报,2021,52(11):1427-1440.
Luo Chun-jia,Kong Jie.Recent Progress in Synthesis and Functionality of Ceramizable Polymers[J].ACTA POLYMERICA SINICA,2021,52(11):1427-1440.
骆春佳,孔杰.可瓷化高分子合成与功能化进展[J].高分子学报,2021,52(11):1427-1440. DOI: 10.11777/j.issn1000-3304.2021.21086.
Luo Chun-jia,Kong Jie.Recent Progress in Synthesis and Functionality of Ceramizable Polymers[J].ACTA POLYMERICA SINICA,2021,52(11):1427-1440. DOI: 10.11777/j.issn1000-3304.2021.21086.
可瓷化高分子是指在制备或使役过程中,能从有机交联网络转化为无机陶瓷并发挥独特功能的一类特种高分子,在特殊和极端环境下服役的材料结构中有重要应用. 本文首先对含硼、锆、铪、铁等元素的可瓷化高分子设计与合成进行了详细介绍;然后对在高温、高压等极端条件应用的可瓷化高分子高性能化进行了总结,主要包括可瓷化高分子在耐高温抗氧化陶瓷、特种高温胶黏剂、耐电弧阻燃涂层中的应用;接着对航空航天用高温电磁波吸收材料、电磁屏蔽材料新应用驱动的可瓷化高分子多功能化进展做一综述. 最后结合未来应用需求,对可瓷化高分子与增材制造、耐高温长寿命复合材料、超材料设计的融合和交叉做了初步展望.
The ceramizable polymers are a group of special functional polymers which can transform from organic cross-linked network to inorganic ceramics during pyrolysis or service under high temperature. This article reviews the latest research on ceramicizable polymers and their derived functional ceramics used under extreme and special environment and aerospace field. According to main elements contained in ceramicizable polymers
the design and synthesis of boron
zirconium
hafnium
iron-containing ceramic polymers are introduced in detail. The stoichiometric ratio
cross-linkable feature and linear
slightly cross-linked and hyperbranched topologies of ceramicizable polymers are key factors to the properties of pyrolyzed ceramics
including ceramic yield
mechanical property
high-temperature resistant and anti-oxidation performances. Due to their ceramicizable feature during pyrolysis or service
self-healing
and flame retardancy under high temperature or arc
the advanced ceramicizable polymers show remarkable application in high-temperature resistant and anti-oxidation ceramics
high-temperature adhesives
arc breakdown resistance and flame retardant coatings mainly used in extreme conditions. Then the new developments in the multifunctionalization of ceramicizable polymers such as electromagnetic wave absorbing materials and electromagnetic interference shielding materials are presented. The introduction of transition metal into ceramicizable polymer is highly effective to tune dielectric and magnetic properties of their derived ceramics. The excellent electromagnetic wave absorption at 885 ℃ with a low minimum reflection coefficient and a wide effective absorption bandwidth was achieved on iron-containing siliconboron carbonitride ceramics derived from the cross-linked network of hyperbranched polyborosilazane and 1
1
'
-bis(dimethylvinylsilyl)ferrocene. In addition
the perspective and further development of integration and intersection of ceramizable polymers are proposed
including but not limited to additive manufacturing
high-temperature self-healing and long-life composites
as well as metamaterials with potential in electromagnetic wave absorbing material at low frequency of 0.5-2 GHz.
可瓷化高分子陶瓷前驱体高温吸波材料电磁屏蔽材料
Ceramizable polymerCeramic precursorHigh-temperature electromagnetic wave absorbing materialElectromagnetic interference shielding material
Wuchina E, Opila E, Opeka M, Fahrenholtz B, Talmy I. Electrochem Soc Interface, 2007, 16(4): 30-38. doi:10.1149/2.f04074ifhttp://dx.doi.org/10.1149/2.f04074if
Savino R, Fumo M D S, Silvestroni L, Sciti D. J Eur Ceram Soc, 2008, 28(9): 1899-1907. doi:10.1016/j.jeurceramsoc.2007.11.021http://dx.doi.org/10.1016/j.jeurceramsoc.2007.11.021
Ionescu E, Kleebe H J, Riedel R. Chem Soc Rev, 2012, 41(15): 5032-5052. doi:10.1039/c2cs15319jhttp://dx.doi.org/10.1039/c2cs15319j
Colombo P, Mera G, Riedel R, Soraru G D. J Am Ceram Soc, 2010, 93(7): 1805-1837
Zhang P, Jia D, Yang Z, Duan X, Zhou Y. J Adv Ceram, 2012, 1(3): 157-178. doi:10.1007/s40145-012-0017-xhttp://dx.doi.org/10.1007/s40145-012-0017-x
Yajima S, Hayashi J, Omori M, Okamura K. Nature, 1976, 261(5562): 683-685. doi:10.1038/261683a0http://dx.doi.org/10.1038/261683a0
Riedel R, Kienzle A, Dressler W, Ruwisch L, Bill J, Aldinger F. Nature, 1996, 382(6594): 796-798. doi:10.1038/382796a0http://dx.doi.org/10.1038/382796a0
Riedel R, Mera G, Hauser R, Klonczynski A. J Ceram Soc Jpn, 2006, 114(1330): 425-444. doi:10.2109/jcersj.114.425http://dx.doi.org/10.2109/jcersj.114.425
Wen Q, Yu Z, Riedel R. Prog Mater Sci, 2020, 109: 100623. doi:10.1016/j.pmatsci.2019.100623http://dx.doi.org/10.1016/j.pmatsci.2019.100623
Barrios E, Zhai L. Mol Syst Des Eng, 2020, 5: 1606-1641. doi:10.1039/d0me00123fhttp://dx.doi.org/10.1039/d0me00123f
Matsunaga K, Iwamoto Y. J Am Ceram Soc, 2001, 84(10): 2213-2219. doi:10.1111/j.1151-2916.2001.tb00990.xhttp://dx.doi.org/10.1111/j.1151-2916.2001.tb00990.x
Matsunaga K, Iwamoto Y, Fisher C A, Matsubara H. J Ceram Soc Jpn, 1999, 107(1251): 1025-1031. doi:10.2109/jcersj.107.1025http://dx.doi.org/10.2109/jcersj.107.1025
Gerstel P, Müller A, Bill J, Aldinger F. Chem Mater, 2003, 15(26): 4980-4986. doi:10.1021/cm031120jhttp://dx.doi.org/10.1021/cm031120j
Kong J, Wang M, Zou J, An L. ACS Appl Mater Interfaces, 2015, 7(12): 6733-6744. doi:10.1021/am509129ahttp://dx.doi.org/10.1021/am509129a
Liu F, Kong J, Luo C, Ye F, Luan X, Tian N, Liu Y, Zhang H, Gu J, Tang Y. Adv Compos Hybrid Mater, 2018, 1(3): 506-517. doi:10.1007/s42114-018-0044-3http://dx.doi.org/10.1007/s42114-018-0044-3
Thiyagarajan G B, Devasia R. J Am Ceram Soc, 2019, 102(1): 476-489. doi:10.1111/jace.15921http://dx.doi.org/10.1111/jace.15921
Zhang Q, Yang Z, Jia D, Chen Q, Zhou Y. New J Chem, 2016, 40(8): 7034-7042. doi:10.1039/c5nj03723ahttp://dx.doi.org/10.1039/c5nj03723a
Kong J, Kong M, Zhang X, Chen L, An L. ACS Appl Mater Interfaces, 2013, 5(20): 10367-10375. doi:10.1021/am403464ehttp://dx.doi.org/10.1021/am403464e
Zhao H, Chen L, Luan X, Zhang X, Yun J, Xu T. J Eur Ceram Soc, 2017, 37(4): 1321-1329. doi:10.1016/j.jeurceramsoc.2016.11.009http://dx.doi.org/10.1016/j.jeurceramsoc.2016.11.009
Luo C, Tang Y, Jiao T, Kong J. ACS Appl Mater Interfaces, 2018, 10(33): 28051-28061. doi:10.1021/acsami.8b07879http://dx.doi.org/10.1021/acsami.8b07879
Song Y, He L, Zhang X, Liu F, Tian N, Tang Y, Kong J. J Phys Chem C, 2017, 121(44): 24774-24785. doi:10.1021/acs.jpcc.7b07646http://dx.doi.org/10.1021/acs.jpcc.7b07646
Yang L, Cheng X, Zhang Y. Appl Organomet Chem, 2020, 34(2): e5352. doi:10.1002/aoc.v34.10http://dx.doi.org/10.1002/aoc.v34.10
Zeng Q, Wang Y, Yang C, Guan K, Liu J, Deng Q, Gao Y. J Eur Ceram Soc, 2021, 41(5): 3037-3044. doi:10.1016/j.jeurceramsoc.2020.06.061http://dx.doi.org/10.1016/j.jeurceramsoc.2020.06.061
Ionescu E, Linck C, Fasel C, Müller M, Kleebe H J, Riedel R. J Am Ceram Soc, 2010, 93(1): 241-250. doi:10.1111/j.1551-2916.2009.03395.xhttp://dx.doi.org/10.1111/j.1551-2916.2009.03395.x
Ionescu E, Papendorf B, Kleebe H J, Breitzke H, Nonnenmacher K, Buntkowsky G, Riedel R. J Eur Ceram Soc, 2012, 32(9): 1873-1881. doi:10.1016/j.jeurceramsoc.2011.09.003http://dx.doi.org/10.1016/j.jeurceramsoc.2011.09.003
Awin E W, Sridar S, Kousaalya A B, Vendra S L, Koroleva E, Filimonov A, Vakhrushev S, Kumar R. Mater Chem Phys, 2021, 260: 124122. doi:10.1016/j.matchemphys.2020.124122http://dx.doi.org/10.1016/j.matchemphys.2020.124122
Liu H, An G, Li H, Chen Z, Li J, Li Y. Ceram Int, 2018, 44(18): 22991-22996. doi:10.1016/j.ceramint.2018.09.098http://dx.doi.org/10.1016/j.ceramint.2018.09.098
Li F, Huang X. J Eur Ceram Soc, 2018, 38(4): 1103-1111. doi:10.1016/j.jeurceramsoc.2017.11.031http://dx.doi.org/10.1016/j.jeurceramsoc.2017.11.031
Wen Q, Yu Z, Riedel R, Ionescu E. J Eur Ceram Soc, 2021, 41(5): 3002-3012. doi:10.1016/j.jeurceramsoc.2020.05.031http://dx.doi.org/10.1016/j.jeurceramsoc.2020.05.031
Wen Q, Xu Y, Xu B, Fasel C, Guillon O, Buntkowsky G, Yu Z, Riedel R, Ionescu E. Nanoscale, 2014, 6(22): 13678-13689. doi:10.1039/c4nr03376khttp://dx.doi.org/10.1039/c4nr03376k
Cheng J, Wang X, Wang H, Shao C, Wang J. J Am Ceram Soc, 2017, 100(11): 5044-5055. doi:10.1111/jace.15063http://dx.doi.org/10.1111/jace.15063
Zhang Q, Gou Y, Wang H, Jian K, Wang Y. Mater Des, 2017, 120: 90-98. doi:10.1016/j.matdes.2017.01.081http://dx.doi.org/10.1016/j.matdes.2017.01.081
Long X, Shao C, Wang H, Wang J. Dalton Trans, 2015, 44(35): 15463-15469. doi:10.1039/c5dt02073ehttp://dx.doi.org/10.1039/c5dt02073e
Long X, Shao C, Wang J, Gou Y. Appl Organomet Chem, 2018, 32(1): e3942. doi:10.1002/aoc.3942http://dx.doi.org/10.1002/aoc.3942
Lyu Y, Tang H, Zhao G. J Eur Ceram Soc, 2020, 40(2): 324-332. doi:10.1016/j.jeurceramsoc.2019.09.026http://dx.doi.org/10.1016/j.jeurceramsoc.2019.09.026
Wu H, Zhang Q, Zhang L. J Eur Ceram Soc, 2019, 39(4): 890-897. doi:10.1016/j.jeurceramsoc.2018.12.022http://dx.doi.org/10.1016/j.jeurceramsoc.2018.12.022
Joo Y J, Kim C J, Cho K Y. Ceram Int, 2019, 45(13): 16008-16014. doi:10.1016/j.ceramint.2019.05.112http://dx.doi.org/10.1016/j.ceramint.2019.05.112
Lv X, Yu S, Ge M, Tian Y, Zhang W. Ceram Int, 2016, 42(7): 9299-9303. doi:10.1016/j.ceramint.2016.02.112http://dx.doi.org/10.1016/j.ceramint.2016.02.112
Hojamberdiev M, Prasad R M, Fasel C, Riedel R, Ionescu E. J Eur Ceram Soc, 2013, 33(13-14): 2465-2472. doi:10.1016/j.jeurceramsoc.2013.04.005http://dx.doi.org/10.1016/j.jeurceramsoc.2013.04.005
Foucher D A, Tang B Z, Manners I. J Am Chem Soc, 1992, 114(15): 6246-6248. doi:10.1021/ja00041a053http://dx.doi.org/10.1021/ja00041a053
Manners I. Chem Commun, 1999, 10(10): 857-865. doi:10.1039/a810043hhttp://dx.doi.org/10.1039/a810043h
MacLachlan M J, Ginzburg M, Coombs N, Coyle T W, Raju N P, Greedan J E, Ozin G A, Manners I. Science, 2000, 287(5457): 1460-1463. doi:10.1126/science.287.5457.1460http://dx.doi.org/10.1126/science.287.5457.1460
Kong J, Schmalz T, Motz G, Müller A H E. Macromolecules, 2011, 44(6): 1280-1291. doi:10.1021/ma1029086http://dx.doi.org/10.1021/ma1029086
Kong J, Schmalz T, Motz G, Müller A H E. J Mater Chem C, 2013, 1(7): 1507-1514. doi:10.1039/c2tc00193dhttp://dx.doi.org/10.1039/c2tc00193d
Luo C, Jiao T, Tang Y, Kong J. Adv Eng Mater, 2018, 20(6): 1701168. doi:10.1002/adem.201701168http://dx.doi.org/10.1002/adem.201701168
Yuan J, Hapis S, Breitzke H, Xu Y, Fasel C, Kleebe H J, Buntkowsky G, Riedel R, Ionescu E. Inorg Chem, 2014, 53(19): 10443-10455. doi:10.1021/ic501512phttp://dx.doi.org/10.1021/ic501512p
Yuan J, Li D, Johanns K E, Fasel C, Durst K, Kleebe H J, Shen Z, Riedel R, Ionescu E. J Eur Ceram Soc, 2017, 37(16): 5157-5165. doi:10.1016/j.jeurceramsoc.2017.04.066http://dx.doi.org/10.1016/j.jeurceramsoc.2017.04.066
Wen Q, Yu Z, Riedel R, Ionescu E. J Eur Ceram Soc, 2020, 40(10): 3499-3508. doi:10.1016/j.jeurceramsoc.2020.03.067http://dx.doi.org/10.1016/j.jeurceramsoc.2020.03.067
Wang S, Zhang Y, Sun Y, Xu Y, Yang M. J Alloy Compd, 2016, 685: 828-835. doi:10.1016/j.jallcom.2016.06.250http://dx.doi.org/10.1016/j.jallcom.2016.06.250
Servadei F, Zoli L, Galizia P, Vinci A, Sciti D. J Eur Ceram Soc, 2020, 40(15): 5076v5084. doi:10.1016/j.jeurceramsoc.2020.05.054http://dx.doi.org/10.1016/j.jeurceramsoc.2020.05.054
Wang H, Gao B, Chen X, Wang J, Chen S, Gou Y. Appl Organomet Chem, 2013, 27(3): 166-173. doi:10.1002/aoc.2959http://dx.doi.org/10.1002/aoc.2959
Wei Y, Yang Y, Liu M, Li Q, Huang Z. J Mater Res Technol, 2020, 9(2): 2289-2298. doi:10.1016/j.jmrt.2019.12.060http://dx.doi.org/10.1016/j.jmrt.2019.12.060
Cheng J, Wang J, Wang X, Wang H. Ceram Int, 2017, 43(9): 7159-7165. doi:10.1016/j.ceramint.2017.02.152http://dx.doi.org/10.1016/j.ceramint.2017.02.152
Cheng J, Wang X, Wang J, Wang H. Ceram Int, 2018, 44(6): 7305-7309. doi:10.1016/j.ceramint.2018.01.066http://dx.doi.org/10.1016/j.ceramint.2018.01.066
Tao X, Zhou S, Xiang Z, Ma J, Hou R, Zhu Y, Wei X. J Alloy Compd, 2017, 697: 318-325. doi:10.1016/j.jallcom.2016.12.121http://dx.doi.org/10.1016/j.jallcom.2016.12.121
Wang H, Chen X, Gao B, Wang J, Wang Y, Chen S, Gou Y. Appl Organomet Chem, 2013, 27(2): 79-84. doi:10.1002/aoc.2943http://dx.doi.org/10.1002/aoc.2943
Wang X, Wang J, Wang H. Int J Adhes Adhes, 2012, 35: 17-20
Wang X, Wang J, Wang H. J Eur Ceram Soc, 2012, 32(12): 3415-3422. doi:10.1016/j.jeurceramsoc.2012.03.032http://dx.doi.org/10.1016/j.jeurceramsoc.2012.03.032
Wang X, Wang J, Wang H. Int J Adhes Adhes, 2013, 45: 1-6
Luan X, Wang J, Zou Y, Cheng L. Mater Sci Eng A, 2016, 651: 517-523. doi:10.1016/j.msea.2015.11.008http://dx.doi.org/10.1016/j.msea.2015.11.008
Luan X, Chang S, Riedel R, Cheng L. Ceram Int, 2018, 44(16): 19505-19511. doi:10.1016/j.ceramint.2018.07.190http://dx.doi.org/10.1016/j.ceramint.2018.07.190
Luan X, Chang S, Riedel R, Cheng L. Ceram Int, 2018, 44(7): 8476-8483. doi:10.1016/j.ceramint.2018.02.045http://dx.doi.org/10.1016/j.ceramint.2018.02.045
Li S, Luo Y, Wang L, Xu C. Int J Appl Ceram Tec, 2017, 14(5): 999-1005. doi:10.1111/ijac.12717http://dx.doi.org/10.1111/ijac.12717
Liu F, Zeng X, Lai X, Li H. RSC Adv, 2017, 7(52): 33020-33028. doi:10.1039/c7ra05438fhttp://dx.doi.org/10.1039/c7ra05438f
Xie C, Zeng X, Fang W, Lai X, Li H. Polym Degrad Stabil, 2017, 142: 263-272. doi:10.1016/j.polymdegradstab.2017.07.015http://dx.doi.org/10.1016/j.polymdegradstab.2017.07.015
Chen W J, Zeng X, Lai X, Li H, Fang W Z, Hou F. ACS Appl Mater Interfaces, 2016, 8(32): 21039-21045. doi:10.1021/acsami.6b05580http://dx.doi.org/10.1021/acsami.6b05580
Lin D, Zeng X, Li H, Lai X, Wu T. J Colloid Interf Sci, 2019, 533, 198-206. doi:10.1016/j.jcis.2018.08.060http://dx.doi.org/10.1016/j.jcis.2018.08.060
Ye F, Zhang L, Yin X, Zhang Y, Kong L, Li Q, Liu Y, Cheng L. J Eur Ceram Soc, 2013, 33(8): 1469-1477. doi:10.1016/j.jeurceramsoc.2013.01.006http://dx.doi.org/10.1016/j.jeurceramsoc.2013.01.006
Luo C, Duan W, Yin X, Kong J. J Phys Chem C, 2016, 120(33): 18721-18732. doi:10.1021/acs.jpcc.6b03995http://dx.doi.org/10.1021/acs.jpcc.6b03995
Luo C, Jiao T, Gu J, Tang Y, Kong J. ACS Appl Mater Interfaces, 2018, 10(45): 39307-39318. doi:10.1021/acsami.8b15365http://dx.doi.org/10.1021/acsami.8b15365
Ding J, Chen F, Chen J, Liang J, Kong J. J Am Ceram Soc, 2021, 104(4): 1772-1784. doi:10.1111/jace.17596http://dx.doi.org/10.1111/jace.17596
Luo C, Miao P, Tang Y, Kong J. Chin J Aeronaut, 2021, Doi: 10.1016/j.cja.2020.06.028http://dx.doi.org/10.1016/j.cja.2020.06.028
Li Q, Yin X, Duan W, Kong L, Liu X, Cheng L, Zhang L. J Eur Ceram Soc, 2014, 34(10): 2187-2201. doi:10.1016/j.jeurceramsoc.2014.02.010http://dx.doi.org/10.1016/j.jeurceramsoc.2014.02.010
Li Z, Wang Y. J Alloy Compd, 2017, 709: 313-321. doi:10.1016/j.jallcom.2017.03.080http://dx.doi.org/10.1016/j.jallcom.2017.03.080
Jia Y, Chowdhury M A R, Xu C. Carbon, 2020, 162: 74-85. doi:10.1016/j.carbon.2020.02.036http://dx.doi.org/10.1016/j.carbon.2020.02.036
Liu X, Yu Z, Ishikawa R, Chen L, Yin X, Ikuhara Y, Riedel R. J Mater Chem C, 2017, 5(31): 7950-7960. doi:10.1039/c7tc00395ahttp://dx.doi.org/10.1039/c7tc00395a
Liu X, Yu Z, Ishikawa R, Chen L, Liu X, Yin X, Ikuhara Y, Riedel R. Acta Mater, 2017, 130: 83-93. doi:10.1016/j.actamat.2017.03.031http://dx.doi.org/10.1016/j.actamat.2017.03.031
Jia Y, Ajayi T D, Roberts Jr M A, Chung C C, Xu C. ACS Appl Mater Interfaces, 2020, 12(41): 46254-46266. doi:10.1021/acsami.0c08479http://dx.doi.org/10.1021/acsami.0c08479
Wen Q, Yu Z, Liu X, Bruns S, Yin X, Eriksson M, Shen Z J, Riedel R. J Mater Chem C, 2019, 7(34): 10683-10693. doi:10.1039/c9tc02369khttp://dx.doi.org/10.1039/c9tc02369k
0
浏览量
163
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构