浏览全部资源
扫码关注微信
吉林大学化学学院 超分子结构与材料国家重点实验室 长春 130023
[ "吕中元,男,1973年生. 1999年获得吉林大学理学博士学位,随后在德国Wuppertal大学从事博士后研究,2003年起任吉林大学副教授、教授,2005年被聘为吉林大学博士生导师. 曾获国家杰出青年科学基金支持. 主要从事聚合物结构与动力学模拟、功能高分子材料设计等领域的研究工作,发展了适于聚合物研究的多尺度模拟方法和软件,发表论文200余篇,总引用4000余次." ]
纸质出版日期:2021-08-20,
网络出版日期:2021-06-24,
收稿日期:2021-03-18,
修回日期:2021-04-21,
扫 描 看 全 文
朱有亮,吕中元.超分子和高分子自组装的动力学模拟研究[J].高分子学报,2021,52(08):884-897.
Zhu You-liang,Lu Zhong-yuan.Dynamics Simulations of Supramolecular and Polymeric Self-assemblies[J].ACTA POLYMERICA SINICA,2021,52(08):884-897.
朱有亮,吕中元.超分子和高分子自组装的动力学模拟研究[J].高分子学报,2021,52(08):884-897. DOI: 10.11777/j.issn1000-3304.2021.21090.
Zhu You-liang,Lu Zhong-yuan.Dynamics Simulations of Supramolecular and Polymeric Self-assemblies[J].ACTA POLYMERICA SINICA,2021,52(08):884-897. DOI: 10.11777/j.issn1000-3304.2021.21090.
超分子和高分子的自组装是发展新型高性能材料的有力手段. 通过自组装构筑多级有序结构,从而显著提高材料的力学、光学或电学性能,是化学和材料科学研究的前沿. 然而精确调控自组装需要深入理解范德华、氢键、静电、主客体复合和
π
-
π
等相互作用以及动力学机理所扮演的角色. 计算机模拟,尤其是分子动力学模拟,为研究自组装结构和演化过程提供了独一无二的手段. 本文主要阐述超分子和高分子的多尺度模型和动力学模拟方法,讨论不同模拟方法的特点、适用范围和优势;进一步简述我们发展的定制模型和方法,以及同时提高模型精度和计算效率方面采取的策略. 通过总结应用这些方法对超分子和高分子自组装开展的研究工作所取得的进展,为进一步发展自组装动力学模拟方法提供参考.
The supramolecular and polymeric self-assemblies provide a powerful means for the development of new high-performance functional materials. However
the precise control of self-assembly requires a deep understanding on the role of van der Waals
hydrogen bonding
electrostatic
host-guest and
π
-
π
interactions
and also on the kinetic pathways. Computer simulations
especially molecular dynamics simulations
provide a unique technique to study the self-assembly structures and their evolving processes. This review summarizes the multi-scale models and methods in the dynamic simulations for supramolecular and polymeric self-assemblies
discusses the characteristics
applications and advantages of different simulation methods
and focuses on the tailored models and methods developed by us together with the strategy to improve the computation accuracy and efficiency. We also show the research progress on supramolecular and polymeric self-assemblies using these methods. The general outline of this review is as follows:Section 1: The large-scale dynamics simulations achieved by tailored coarse-grained models combined with GPU-accelerated computing are crucial for the studies of supramolecular and polymeric self-assemblies that usually happen at mesoscopic scale (length = 10-1000 nm
time = 10
-9
to 10
-3
s). Therefore
in this section a simple technical summary for large-scale dynamics simulation methods and high-performance computing techniques is included.Section 2: The self-assemblies of polymer-grafted nanoparticles triggered by such as changing the solution conditions can form super-lattice crystals
micelles or vesicles. These assemblies show important potentials in the applications ranging from semiconductor materials and optical materials to medical development
cancer treatment
and drug delivery. This section presents a concise review of our recent simulation advances in the fabrication and self-assemblies of polymer-grafted nanoparticles.Section 3: The self-assemblies of polymers and supramolecules in solution are a spontaneous organization process driven by the minimization of free energy
which often shows multi-scale characteristics. The ordered structures formed by the self-assemblies
such as layered
columnar
spherical
fibrous micelles and vesicles
are important to develop new functional materials. The advances achieved by us on the multiscale modeling of amphiphilic polymers and supramolecules and the dynamics simulations of their self-assemblies are summarized in this section
which offer a unique approach to investigating this topic.
超分子高分子自组装动力学模拟
Dynamics simulationSelf-assemblySupramoleculePolymer
Wang S, Easley A D, Lutkenhaus J L. ACS Macro Lett, 2020, 9(3): 358-370. doi:10.1021/acsmacrolett.0c00063http://dx.doi.org/10.1021/acsmacrolett.0c00063
Jain S, Bates F S. Science, 2003, 300(5618): 460-464. doi:10.1126/science.1082193http://dx.doi.org/10.1126/science.1082193
Mai Y, Eisenberg A. Chem Soc Rev, 2012, 41(18): 5969-5985. doi:10.1039/c2cs35115chttp://dx.doi.org/10.1039/c2cs35115c
Blanazs A, Armes S P, Ryan A J. Macromol Rapid Commun, 2009, 30(4-5): 267-277. doi:10.1002/marc.200800713http://dx.doi.org/10.1002/marc.200800713
Zhu J, Hayward R C. J Am Chem Soc, 2008, 130(23): 7496-7502. doi:10.1021/ja801268ehttp://dx.doi.org/10.1021/ja801268e
Lee S, Bluemle M J, Bates F S. Science, 2010, 330(6002): 349-353. doi:10.1126/science.1195552http://dx.doi.org/10.1126/science.1195552
Xu H, Chen D, Wang S, Zhou Y, Sun J, Zhang W, Zhang X. Philos T R Soc A, 2013, 371(2000): 20120305. doi:10.1098/rsta.2012.0305http://dx.doi.org/10.1098/rsta.2012.0305
Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. Weinheim: Wiley-VCH. 1995. doi:10.1002/3527607439http://dx.doi.org/10.1002/3527607439
Yan D, Zhou Y, Hou J. Science, 2004, 303(5654): 65-67. doi:10.1126/science.1090763http://dx.doi.org/10.1126/science.1090763
Aida T, Meijer E W, Stupp S I. Science, 2012, 335(6070): 813-817. doi:10.1126/science.1205962http://dx.doi.org/10.1126/science.1205962
Korevaar P A, George S J, Markvoort A J, Smulders M M J, Hilbers P A J, Schenning A P H J, de Greef T F A, Meijer E W. Nature, 2012, 481(7382): 492-496. doi:10.1038/nature10720http://dx.doi.org/10.1038/nature10720
Pieters B J G E, van Eldijk M B, Nolte R J M, Mecinović J. Chem Soc Rev, 2016, 45(1): 24-39. doi:10.1039/c5cs00157ahttp://dx.doi.org/10.1039/c5cs00157a
Niu W, Zhu Y, Wang R, Lu Z, Liu X, Sun J. ACS Appl Mater Interfaces, 2020, 12(27): 30805-30814. doi:10.1021/acsami.0c06995http://dx.doi.org/10.1021/acsami.0c06995
An N, Wang X, Li Y, Zhang L, Lu Z, Sun J. Adv Mater, 2019, 31(41): 1904882. doi:10.1002/adma.201904882http://dx.doi.org/10.1002/adma.201904882
Stuart M A C, Huck W T S, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat Mater, 2010, 9(2): 101-113. doi:10.1038/nmat2614http://dx.doi.org/10.1038/nmat2614
Whitesides G M, Grzybowski B. Science, 2002, 295(5564): 2418-2421. doi:10.1126/science.1070821http://dx.doi.org/10.1126/science.1070821
Service R F. Science, 2005, 309(5731): 95. doi:10.1126/science.309.5731.95http://dx.doi.org/10.1126/science.309.5731.95
Zhu Youliang(朱有亮), Li Zhanwei(李占伟), Sun Zhaoyan(孙昭艳), Lu Zhongyuan(吕中元). Acta Polymerica Sinica(高分子学报), 2017, (2): 351-358. doi:10.11777/j.issn1000-3304.2017.16294http://dx.doi.org/10.11777/j.issn1000-3304.2017.16294
Whitesides G M, Mathias J P, Seto C T. Science, 1991, 254(5036): 1312-1319. doi:10.1126/science.1962191http://dx.doi.org/10.1126/science.1962191
Gartner T E, Jayaraman A. Macromolecules, 2019, 52(3): 755-786. doi:10.1021/acs.macromol.8b01836http://dx.doi.org/10.1021/acs.macromol.8b01836
Zhang Q, Lin J, Wang L, Xu Z. Prog Polym Sci, 2017, 75: 1-30. doi:10.1016/j.progpolymsci.2017.04.003http://dx.doi.org/10.1016/j.progpolymsci.2017.04.003
Yan L T, Xie X M. Prog Polym Sci, 2013, 38(2): 369-405. doi:10.1016/j.progpolymsci.2012.05.001http://dx.doi.org/10.1016/j.progpolymsci.2012.05.001
Carter E A. Science, 2008, 321(5890): 800-803. doi:10.1126/science.1158009http://dx.doi.org/10.1126/science.1158009
Allen M P, Tildesley D J. Computer Simulation of Liquids. New York: Oxford Science Publications, Oxford University Press, 1989
Frenkel D, Smit B. Understanding Molecular Simulations. 2nd ed.: Academic Press, 2002. doi:10.1016/b978-012267351-1/50006-7http://dx.doi.org/10.1016/b978-012267351-1/50006-7
Izvekov S, Voth G A. J Phys Chem B, 2005, 109(7): 2469-2473. doi:10.1021/jp044629qhttp://dx.doi.org/10.1021/jp044629q
Groot R D, Warren P B. J Chem Phys, 1997, 107(11): 4423-4435. doi:10.1063/1.474784http://dx.doi.org/10.1063/1.474784
Ermak D L, McCammon J A. J Chem Phys, 1978, 69(4): 1352-1360. doi:10.1063/1.436761http://dx.doi.org/10.1063/1.436761
Helfand E, Tagami Y. J Chem Phys, 1972, 56(7): 3592-3601. doi:10.1063/1.1677735http://dx.doi.org/10.1063/1.1677735
Gusev A A. J Mech Phys Solids, 1997, 45(9): 1449-1459. doi:10.1016/s0022-5096(97)00016-1http://dx.doi.org/10.1016/s0022-5096(97)00016-1
Banerjee P K, Dargush G F, Honkala K. In: Annigeri B S, Tseng K, eds. Boundary Element Methods in Engineering. Berlin, Heidelberg: Springer, 1990. 94-104. doi:10.1007/978-3-642-84238-2_13http://dx.doi.org/10.1007/978-3-642-84238-2_13
Zhuang Ying(庄莹), Wang Liquan(王立权), Lin Jiaping(林嘉平). Acta Polymerica Sinica(高分子学报), 2011, (11): 1320-1328. doi:10.3724/SP.J.1105.2011.11017http://dx.doi.org/10.3724/SP.J.1105.2011.11017
Li Zhanwei(李占伟), Jia Xiaoxi(贾晓溪), Zhang Jing(张静), Sun Zhaoyan(孙昭艳), Lu Zhongyuan(吕中元). Acta Polymerica Sinica(高分子学报), 2011, (9): 973-984. doi:10.3724/SP.J.1105.2011.11102http://dx.doi.org/10.3724/SP.J.1105.2011.11102
Cui H, Chen Z, Zhong S, Wooley K L, Pochan D J. Science, 2007, 317(5838): 647-650. doi:10.1126/science.1141768http://dx.doi.org/10.1126/science.1141768
Stanzione F, Jayaraman A. J Phys Chem B, 2016, 120(17): 4160-4173. doi:10.1021/acs.jpcb.6b02327http://dx.doi.org/10.1021/acs.jpcb.6b02327
Zhu Y L, Lu Z Y, Milano G, Shi A C, Sun Z Y. Phys Chem Chem Phys, 2016, 18(14): 9799-9808. doi:10.1039/c5cp06856hhttp://dx.doi.org/10.1039/c5cp06856h
Chen L J, Qian H J, Lu Z Y, Li Z-S, Sun C C. J Phys Chem B, 2006, 110(47): 24093-24100. doi:10.1021/jp0644558http://dx.doi.org/10.1021/jp0644558
Li Z, Liu Y, Liu Y, Lu Z. Sci China Chem, 2011, 54(9): 1474-1483. doi:10.1007/s11426-011-4333-8http://dx.doi.org/10.1007/s11426-011-4333-8
Li Z W, Lu Z Y, Sun Z Y, An L J. Soft Matter, 2012, 8(25): 6693-6697. doi:10.1039/c2sm25397fhttp://dx.doi.org/10.1039/c2sm25397f
Li Z W, Zhu Y L, Lu Z Y, Sun Z Y. Soft Matter, 2016, 12(3): 741-749. doi:10.1039/c5sm02125ahttp://dx.doi.org/10.1039/c5sm02125a
Li Z W, Zhu Y L, Lu Z Y, Sun Z Y. Soft Matter, 2018, 14(37): 7625-7633. doi:10.1039/c8sm01631chttp://dx.doi.org/10.1039/c8sm01631c
Liu H, Qian H J, Zhao Y, Lu Z Y. J Chem Phys, 2007, 127(14): 144903. doi:10.1063/1.2790005http://dx.doi.org/10.1063/1.2790005
Liu H, Zhu Y L, Lu Z Y, Mueller-Plathe F. J Comput Chem, 2016, 37(30): 2634-2646. doi:10.1002/jcc.24495http://dx.doi.org/10.1002/jcc.24495
Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y. J Comput Chem, 2013, 34(25): 2197-2211. doi:10.1002/jcc.23365http://dx.doi.org/10.1002/jcc.23365
Zhu Y L, Pan D, Li Z W, Liu H, Qian H J, Zhao Y, Lu Z Y, Sun Z Y. Mol Phys, 2018, 116(7-8): 1065-1077. doi:10.1080/00268976.2018.1434904http://dx.doi.org/10.1080/00268976.2018.1434904
Ma S M, Zhao L, Wang Y L, Zhu Y L, Lu Z Y. Phys Chem Chem Phys, 2020, 22(28): 15976-15985. doi:10.1039/d0cp01006ehttp://dx.doi.org/10.1039/d0cp01006e
Hu F F, Sun Y W, Zhu Y L, Huang Y N, Li Z W, Sun Z Y. Nanoscale, 2019, 11(37): 17350-17356. doi:10.1039/c9nr05885khttp://dx.doi.org/10.1039/c9nr05885k
Ercolessi F, Adams J B. Europhysics Lett, 1994, 26(8): 583-588. doi:10.1209/0295-5075/26/8/005http://dx.doi.org/10.1209/0295-5075/26/8/005
Izvekov S, Parrinello M, Burnham C J, Voth G A. J Chem Phys, 2004, 120(23): 10896-10913. doi:10.1063/1.1739396http://dx.doi.org/10.1063/1.1739396
Shell M S. J Chem Phys, 2008, 129(14): 144108. doi:10.1063/1.2992060http://dx.doi.org/10.1063/1.2992060
Lyubartsev A P, Naômé A, Vercauteren D P, Laaksonen A. J Chem Phys, 2015, 143(24): 243120. doi:10.1063/1.4934095http://dx.doi.org/10.1063/1.4934095
Reith D, Pütz M, Müller-Plathe F. J Comput Chem, 2003, 24(13): 1624-1636. doi:10.1002/jcc.10307http://dx.doi.org/10.1002/jcc.10307
Marrink S J, de Vries A H, Mark A E. J Phys Chem B, 2004, 108(2): 750-760. doi:10.1021/jp036508ghttp://dx.doi.org/10.1021/jp036508g
Marrink S J, Tieleman D P. Chem Soc Rev, 2013, 42(16): 6801-6822. doi:10.1039/c3cs60093ahttp://dx.doi.org/10.1039/c3cs60093a
Español P, Warren P. Europhysics Lett, 1995, 30(4): 191-196. doi:10.1209/0295-5075/30/4/001http://dx.doi.org/10.1209/0295-5075/30/4/001
Huh J, Kim K H, Ahn C H, Jo W H. J Chem Phys, 2004, 121(10): 4998-5004. doi:10.1063/1.1782109http://dx.doi.org/10.1063/1.1782109
Xu D, Ni C Y, Zhu Y L, Lu Z Y, Xue Y H, Liu H. J Chem Phys, 2018, 148(2): 024901. doi:10.1063/1.4999050http://dx.doi.org/10.1063/1.4999050
Zhu Y L, Zhao H Y, Fu C L, Li Z W, Sun Z Y, Lu Z. J Phys Chem Lett, 2020, 11(22): 9952-9956. doi:10.1021/acs.jpclett.0c02960http://dx.doi.org/10.1021/acs.jpclett.0c02960
Zhu Y L, Fu C L, Li Z W, Sun Z Y. J Phys Chem Lett, 2020, 11(1): 179-183. doi:10.1021/acs.jpclett.9b03420http://dx.doi.org/10.1021/acs.jpclett.9b03420
Li Z W, Chen L J, Zhao Y, Lu Z Y. J Phys Chem B, 2008, 112(44): 13842-13848. doi:10.1021/jp804372shttp://dx.doi.org/10.1021/jp804372s
Li Z W, Lu Z Y, Zhu Y L, Sun Z Y, An L J. RSC Adv, 2013, 3(3): 813-822. doi:10.1039/c2ra22108jhttp://dx.doi.org/10.1039/c2ra22108j
Li Z W, Sun Z Y, Lu Z Y. J Phys Chem B, 2010, 114(7): 2353-2358. doi:10.1021/jp909959khttp://dx.doi.org/10.1021/jp909959k
Boles M A, Engel M, Talapin D V. Chem Rev, 2016, 116(18): 11220-11289. doi:10.1021/acs.chemrev.6b00196http://dx.doi.org/10.1021/acs.chemrev.6b00196
Song J, Lin L, Yang Z, Zhu R, Zhou Z, Li Z W, Wang F, Chen J, Yang H, Chen X. J Am Chem Soc, 2019, 141(20): 8158-8170
Yi C, Yang Y, Liu B, He J, Nie Z. Chem Soc Rev, 2020, 49(2): 465-508. doi:10.1039/c9cs00725chttp://dx.doi.org/10.1039/c9cs00725c
Zhu G, Huang Z, Xu Z, Yan L T. Acc Chem Res, 2018, 51(4): 900-909. doi:10.1021/acs.accounts.8b00001http://dx.doi.org/10.1021/acs.accounts.8b00001
Liu Z, Guo R, Xu G, Huang Z, Yan L T. Nano Lett, 2014, 14(12): 6910-6916. doi:10.1021/nl5029396http://dx.doi.org/10.1021/nl5029396
Zhou Y, Ma X, Zhang L, Lin J. Phys Chem Chem Phys, 2017, 19(28): 18757-18766. doi:10.1039/c7cp03294chttp://dx.doi.org/10.1039/c7cp03294c
Ma S, Hu Y, Wang R. Macromolecules, 2016, 49(9): 3535-3541. doi:10.1021/acs.macromol.5b02778http://dx.doi.org/10.1021/acs.macromol.5b02778
Knorowski C, Burleigh S, Travesset A. Phys Rev Lett, 2011, 106(21): 215501. doi:10.1103/physrevlett.106.215501http://dx.doi.org/10.1103/physrevlett.106.215501
Zhou T, Wang B, Dong B, Li C Y. Macromolecules, 2012, 45(21): 8780-8789. doi:10.1021/ma3019987http://dx.doi.org/10.1021/ma3019987
Wang B, Li B, Zhao B, Li C Y. J Am Chem Soc, 2008, 130(35): 11594-11595. doi:10.1021/ja804192ehttp://dx.doi.org/10.1021/ja804192e
Li B Y, Zhao L, Lu Z Y. Phys Chem Chem Phys, 2020, 22(9): 5347-5354. doi:10.1039/c9cp06497dhttp://dx.doi.org/10.1039/c9cp06497d
Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R. Science, 2019, 363(6431): 1059-1064. doi:10.1126/science.aav1910http://dx.doi.org/10.1126/science.aav1910
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P. Nature, 2018, 556(7699): 43-50. doi:10.1038/nature26160http://dx.doi.org/10.1038/nature26160
Li B Y, Li Y C, Lu Z Y. J Phys Chem Lett, 2020, 11(12): 4542-4547. doi:10.1021/acs.jpclett.0c01153http://dx.doi.org/10.1021/acs.jpclett.0c01153
Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G, Capasso F. Science, 2010, 328(5982): 1135-1138. doi:10.1126/science.1187949http://dx.doi.org/10.1126/science.1187949
Yi C, Liu H, Zhang S, Yang Y, Zhang Y, Lu Z, Kumacheva E, Nie Z. Science, 2020, 369(6509): 1369-1374. doi:10.1126/science.aba8653http://dx.doi.org/10.1126/science.aba8653
Arai N, Yasuoka K, Zeng X C. ACS Nano, 2016, 10(8): 8026-8037. doi:10.1021/acsnano.6b04087http://dx.doi.org/10.1021/acsnano.6b04087
Li Q, Wang Z, Yin Y, Jiang R, Li B. Macromolecules, 2018, 51(8): 3050-3058. doi:10.1021/acs.macromol.8b00189http://dx.doi.org/10.1021/acs.macromol.8b00189
Zheng Lingfei(郑玲飞), Wang Zheng(王铮), Yin Yuhua(尹玉华), Jiang Run(蒋润), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2019, 50(9): 915-924. doi:10.11777/j.issn1000-3304.2019.19051http://dx.doi.org/10.11777/j.issn1000-3304.2019.19051
Yu B, Sun P, Chen T, Jin Q, Ding D, Li B, Shi A C. Phys Rev Lett, 2006, 96(13): 138306. doi:10.1103/physrevlett.96.138306http://dx.doi.org/10.1103/physrevlett.96.138306
Hao Jinlong(郝金龙), Wang Zhan(汪湛), Wang Zheng(王铮), Yin Yuhua(尹玉华), Jiang Run(蒋润), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2017, (11): 1841-1850. doi:10.11777/j.issn1000-3304.2017.17031http://dx.doi.org/10.11777/j.issn1000-3304.2017.17031
Nie Y, Gao H, Yu M, Hu Z, Reiter G, Hu W. Polymer, 2013, 54(13): 3402-3407. doi:10.1016/j.polymer.2013.04.047http://dx.doi.org/10.1016/j.polymer.2013.04.047
Nie Y, Gao H, Hu W. Polymer, 2014, 55(5): 1267-1272. doi:10.1016/j.polymer.2014.01.034http://dx.doi.org/10.1016/j.polymer.2014.01.034
Zhang R, Zha L, Hu W. J Phys Chem B, 2016, 120(27): 6754-6760. doi:10.1021/acs.jpcb.6b01757http://dx.doi.org/10.1021/acs.jpcb.6b01757
Zhu Ziting(朱子霆), Gao Huanhuan(高欢欢), Hu Wenbing(胡文兵). Acta Polymerica Sinica(高分子学报), 2017, (9): 1471-1478. doi:10.11777/j.issn1000-3304.2017.17055http://dx.doi.org/10.11777/j.issn1000-3304.2017.17055
Guan X, Wang J, Hu W. J Phys Chem B, 2018, 122(48): 10928-10933. doi:10.1021/acs.jpcb.8b07499http://dx.doi.org/10.1021/acs.jpcb.8b07499
Hu W. Physics Reports, 2018, 747: 1-50. doi:10.1016/j.physrep.2018.04.004http://dx.doi.org/10.1016/j.physrep.2018.04.004
Li Z, Kesselman E, Talmon Y, Hillmyer M A, Lodge T P. Science, 2004, 306(5693): 98-101. doi:10.1126/science.1103350http://dx.doi.org/10.1126/science.1103350
Li B, Zhao L, Qian H J, Lu Z Y. Soft Matter, 2014, 10(13): 2245-2252. doi:10.1039/c3sm52660ghttp://dx.doi.org/10.1039/c3sm52660g
Manoharan V N, Elsesser M T, Pine D J. Science, 2003, 301(5632): 483-487. doi:10.1126/science.1086189http://dx.doi.org/10.1126/science.1086189
Chen Q, Whitmer J K, Jiang S, Bae S C, Luijten E, Granick S. Science, 2011, 331(6014): 199-202. doi:10.1126/science.1197451http://dx.doi.org/10.1126/science.1197451
Zhang J, Lu Z Y, Sun Z Y. Soft Matter, 2011, 7(21): 9944-9950. doi:10.1039/c1sm05845bhttp://dx.doi.org/10.1039/c1sm05845b
Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn H J, Bao Y, Yu M. Science, 2013, 342(6154): 95-98. doi:10.1126/science.1236686http://dx.doi.org/10.1126/science.1236686
Li Z W, Sun Y W, Wang Y H, Zhu Y L, Lu Z Y, Sun Z Y. Nanoscale, 2020, 12(7): 4544-4551. doi:10.1039/c9nr09656fhttp://dx.doi.org/10.1039/c9nr09656f
Frauenfelder H, Sligar S G, Wolynes P G. Science, 1991, 254(5038): 1598-1603. doi:10.1126/science.1749933http://dx.doi.org/10.1126/science.1749933
Lindeboom J J, Nakamura M, Hibbel A, Shundyak K, Gutierrez R, Ketelaar T, Emons A M C, Mulder B M, Kirik V, Ehrhardt D W. Science, 2013, 342(6163): 1245533. doi:10.1126/science.1245533http://dx.doi.org/10.1126/science.1245533
Shen B, Zhu Y, Kim Y, Zhou X, Sun H, Lu Z, Lee M. Nat Commun, 2019, 10(1): 1080. doi:10.1038/s41467-019-09099-9http://dx.doi.org/10.1038/s41467-019-09099-9
0
浏览量
203
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构