浏览全部资源
扫码关注微信
1.中国科学院化学研究所 极端环境高分子材料重点实验室 北京 100190
2.中国科学院大学化学科学学院 北京 100049
[ "翟磊,男,1985年生. 2007年毕业于青岛科技大学获得学士学位,2012年于中国科学院化学研究所高分子化学与物理专业获得博士学位,2012~2017年于中海油研究总院任高级工程师、项目高级主管,2018年至今在中国科学院化学研究所极端环境高分子材料重点实验室工作. 主要从事电子及微电子用功能性聚酰亚胺材料的基础与应用研究,近些年围绕柔性显示、高频通信、先进半导体及集成电路等应用需求与技术挑战,先后开展了高透明、低介电损耗、低膨胀、高导热、低温酰亚胺化等系列高性能聚酰亚胺材料的结构设计与性能研究工作. 已发表学术论文18篇,申请/授权国家发明专利20余项." ]
[ "范琳,女,1964年生. 1989年毕业于北京化工大学高分子材料专业获得硕士学位,1989~1994年于(原)化工部北京化工研究院任工程师,1999年于日本千叶大学物质科学专攻获博士学位,1999~2002年在日本千叶大学电子光情报基盘技术研究中心从事博士后研究. 2002年至今,中国科学院化学研究所研究员,2021年担任中国电工技术学会绝缘材料与绝缘技术专业委员会委员. 先后获得中国科学院院地合作奖(2013年)、中国产学研合作创新成果奖(2013年)、工信部技术发明二等奖(2014年)等. 研究方向为高性能和功能性聚酰亚胺材料,重点开展聚酰亚胺材料的分子设计与制备方法、聚合物结构与性能调控、材料成型方法与环境使役性等基础研究,并针对微电子和柔性显示领域开展聚酰亚胺材料应用研究和产业化技术研究." ]
纸质出版日期:2021-10-20,
网络出版日期:2021-08-04,
收稿日期:2021-03-24,
修回日期:2021-04-09,
扫 描 看 全 文
高梦岩,王畅鸥,贾妍等.聚酰亚胺薄膜材料的各向异性导热行为研究与进展[J].高分子学报,2021,52(10):1283-1297.
Gao Meng-yan,Wang Chang-ou,Jia Yan,et al.Research Progress in Anisotropic Thermal Conduction Behavior of Polyimide Films[J].ACTA POLYMERICA SINICA,2021,52(10):1283-1297.
高梦岩,王畅鸥,贾妍等.聚酰亚胺薄膜材料的各向异性导热行为研究与进展[J].高分子学报,2021,52(10):1283-1297. DOI: 10.11777/j.issn1000-3304.2021.21094.
Gao Meng-yan,Wang Chang-ou,Jia Yan,et al.Research Progress in Anisotropic Thermal Conduction Behavior of Polyimide Films[J].ACTA POLYMERICA SINICA,2021,52(10):1283-1297. DOI: 10.11777/j.issn1000-3304.2021.21094.
聚酰亚胺薄膜材料在集成电路、光电显示、柔性电子等领域具有广泛应用,然而其较差的导热性能越来越无法满足器件的快速散热需求. 在保持耐热、力学等优势性能基础上,发展新一代高导热各向异性的聚酰亚胺薄膜材料成为国内外研究的重点. 本文系统总结了聚酰亚胺本征薄膜及聚酰亚胺/导热填料复合薄膜在各向异性导热行为方面的研究进展,重点从聚酰亚胺分子结构设计、各向异性导热机理、填料取向排列、基体相态结构等方面进行了详细介绍. 通过对非晶型与液晶型两类聚酰亚胺结构特点的分析,阐述了聚酰亚胺本征薄膜的分子结构与各向异性导热性能的关系;介绍了基于导热填料取向排列和基于基体相分离结构两类复合薄膜的填料取向与导热通路构建方法,深入分析了导热填料在基体中的分散形态对薄膜各向异性导热行为的影响,最后对导热聚酰亚胺薄膜材料面临的挑战进行了总结与展望.
Polyimide films are widely used in the fields of advanced integrated circuits
optoelectronic displays
flexible functional electronics
etc
. With the further development of application
the poor thermal conductivity of polyimide film is unable to meet the rapid heat dissipation requirements of electronic devices. In order to improve the thermal conductivity of films and maintain the superior performance of polyimide materials
a new generation of anisotropic polyimide films with high thermal conductivity has become the focus of research. Due to the obvious anisotropy in the structure or properties of polyimides and thermally conductive fillers
the thermal conductivity behavior of both polyimide intrinsic films and polyimide-based composite films mostly shows significant anisotropy. The molecular structures and chain aggregation of polyimides
orientation arrangement of thermally conductive fillers
as well as the matrix morphology will all exert an important impact on the thermal conductivity and their anisotropic behavior of films. Here
we systematically summarize the research progress on anisotropic thermal conduction behavior of polyimide intrinsic films and polyimide-based composite films. The molecular structure design of polyimides
anisotropic heat conduction mechanism
filler orientation and matrix phase structures are discussed in detail. The effect of structural characteristics of polyimide intrinsic films on their thermal conductivity in different directions is presented
and the related research results of amorphous polyimides and liquid crystalline polyimides are respectively introduced. Composite films based on the orientation arrangement of thermally conductive fillers are described
and the other polyimide-based composite films with the matrix phase separation structures are also concluded. The relationship between the orientation or dispersed state of thermally conductive fillers in the matrix and the anisotropic thermal conduction behavior of two types composite films are particularly investigated. Finally
the challenges of polyimide-based film materials with high anisotropic thermal conduction are summarized and the prospects of the future work are outlooked.
聚酰亚胺本征薄膜复合薄膜导热行为各向异性
PolyimideIntrinsic filmsComposite filmsThermal conduction behaviorAnisotropy
Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S. Prog Polym Sci, 2012, 37(7): 907-974. doi:10.1016/j.progpolymsci.2012.02.005http://dx.doi.org/10.1016/j.progpolymsci.2012.02.005
Zhai L, Yang S Y, Fan L. Polymer, 2012, 53(16): 3529-3539. doi:10.1016/j.polymer.2012.05.047http://dx.doi.org/10.1016/j.polymer.2012.05.047
Ma P C, Dai C T, Wang H Z, Li Z K, Liu H B, Li W M, Yang C L. Compos Commun, 2019, 16: 84-93. doi:10.1016/j.coco.2019.08.011http://dx.doi.org/10.1016/j.coco.2019.08.011
Bai L, Zhai L, He M H, Wang C O, Mo S, Fan L. React Funct Polym, 2019, 141: 155-164. doi:10.1016/j.reactfunctpolym.2019.05.009http://dx.doi.org/10.1016/j.reactfunctpolym.2019.05.009
Luo Longbo(罗龙波), Ye Xinhe(叶信合), Yi Jiang(易江), Li Ke(李科), Liu Xiangyang(刘向阳). Acta Polymerica Sinica(高分子学报), 2021, 52(4): 363-370
Bai Lan(白兰), Zhai Lei(翟磊), He Minhui(何民辉), Wang Changou(王畅鸥), Mo Song(莫松), Fan Lin(范琳).Acta Polymerica Sinica(高分子学报), 2019, 50(12): 1305-1313
Yin Chuangen(尹传根), Fan Jinchen(范金辰), Min Yulin(闵宇霖), Xu Qunjie(徐群杰). Insulating Materials(绝缘材料), 2017, 50(8): 34-40
Wei Shiyang(魏世洋), Zheng Zhibo(郑智博), Yu Qiaoxi(余桥溪), Fan Zhenguo(范振国), Liu Siwei(刘四委), Chi Zhenguo(池振国), Zhang Yi(张艺), Xu Jiarui(许家瑞). Acta Polymerica Sinica(高分子学报), 2019, 50(4): 1-8
Chen H Y, Ginzburg V V, Yang J, Yang Y F, Liu W, Huang Y, Du L B, Chen B. Prog Polym Sci, 2016, 59: 41-85. doi:10.1016/j.progpolymsci.2016.03.001http://dx.doi.org/10.1016/j.progpolymsci.2016.03.001
Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D. Prog Polym Sci, 2016, 61: 1-28. doi:10.1016/j.progpolymsci.2016.05.001http://dx.doi.org/10.1016/j.progpolymsci.2016.05.001
Yang Xuewei(杨雪薇), Li Rui(李睿), Zhao Ning(赵宁), Xu Jian(徐坚). Polymer Bulletin(高分子通报), 2020, (12): 1-8
Gu J W, Lv Z Y, Wu Y L, Guo Y Q, Tian L D, Qiu H, Li W Z, Zhang Q Y. Compos Part A-Appl S, 2017, 94: 209-216. doi:10.1016/j.compositesa.2016.12.014http://dx.doi.org/10.1016/j.compositesa.2016.12.014
Liu D X, Ma C G, Chi H T, Li S H, Zhang P, Dai P B. RSC Adv, 2020, 10(69): 42584-42595. doi:10.1039/d0ra08048ahttp://dx.doi.org/10.1039/d0ra08048a
Wang Haitao(王海涛), Ding Dongliang(丁栋梁), Liu Qian(刘乾), Chen Yanhui(陈妍慧), Zhang Qiuyu(张秋禹). Polymer Materials Science and Engineering(高分子材料科学与工程), 2019, 35(8): 159-166
Ding D L, Wang H T, Wu Z Q, Chen Y H, Zhang Q Y. Macromol Rapid Commun, 2019: 1800805. doi:10.1002/marc.201800805http://dx.doi.org/10.1002/marc.201800805
Huang X Y, Jiang P K, Toshikatsu T. IEEE Electr Insul M, 2011, 27: 8-16
Wu Y M, Ye K, Liu Z D, Wang M J, Chee K W A, Lin C T, Jiang N, Yu J H. J Mater Chem C, 2018, 6: 6494-6501. doi:10.1039/c8tc01464ghttp://dx.doi.org/10.1039/c8tc01464g
Han J K, Du G L, Gao W W, Bai H. Adv Funct Mater, 2019, 29: 1900412. doi:10.1002/adfm.201900412http://dx.doi.org/10.1002/adfm.201900412
Lei C X, Wu K, Wu L Y, Liu W J, Du R N, Chen F, Fu Q. J Mater Chem C, 2019, 7: 19364-19373. doi:10.1039/c9ta05067ahttp://dx.doi.org/10.1039/c9ta05067a
Zhang P, Zhang X, Ding X, Wang Y Y, Shu M T, Zeng X L, Gong Y, Zheng K, Tian X Y. Nanotechnology, 2020, 31(47): 475709. doi:10.1088/1361-6528/abaf82http://dx.doi.org/10.1088/1361-6528/abaf82
Zhang M, Liu W L, Gao X, Cui P, Zou T, Hu G H, Tao L M, Zhai L. Polymers, 2020, 12: 1532. doi:10.3390/polym12071532http://dx.doi.org/10.3390/polym12071532
Huag C, Li J H, Sun D L, Xuan R, Sui Y Y, Li T Y, Shang L, Zhang G P, Sun R, Wong C P. J Mater Chem C, 2020, 8: 14886-14894
Kurabayashi K, Goodson K E. J Appl Phys, 1999, 86(4): 1925-1931. doi:10.1063/1.370989http://dx.doi.org/10.1063/1.370989
Kurabayashi K, Asheghi M, Touzelbaev M, Goodson K E. J Microelectromech Syst, 1999, 8(2): 180-191. doi:10.1109/84.767114http://dx.doi.org/10.1109/84.767114
Morikawa J, Hashimoto T. J Appl Phys, 2009, 105(11): 113506. doi:10.1063/1.3116509http://dx.doi.org/10.1063/1.3116509
Yorifuji D, Ando S. Macromolecules, 2010, 43(18): 7583-7593. doi:10.1021/ma101066phttp://dx.doi.org/10.1021/ma101066p
Wang M, Wang J, Yang H, Lin B P, Chen E Q, Keller P, Zhang X Q, Sun Y. Chem Commun, 2016, 52(23): 4313-4316. doi:10.1039/c6cc00081ahttp://dx.doi.org/10.1039/c6cc00081a
Ge S J, Zhao T P, Wang M, Deng L L, Lin B P, Zhang X Q, Sun Y, Yang H, Chen E Q. Soft Matter, 2017, 13(32): 5463-5468. doi:10.1039/c7sm01154ghttp://dx.doi.org/10.1039/c7sm01154g
Tatsuo I K, Ken I, Junji W. Macromolecules, 1997, 30: 4244-4246. doi:10.1021/ma9704370http://dx.doi.org/10.1021/ma9704370
Tatsuo I, Masa-aki K, Yoshio I, Junji W. Macromol Chem Phys, 1997, 198: 519-530. doi:10.1002/macp.1997.021980224http://dx.doi.org/10.1002/macp.1997.021980224
Hsu W H, Tatsuo I K, Kazuyuki H, Junji W. Polymer, 1999, 40: 3821-3828. doi:10.1016/s0032-3861(98)00589-8http://dx.doi.org/10.1016/s0032-3861(98)00589-8
Costa G, Eastmond G C, Fairclough J P A, Paprotny J, Ryan A J, Stagnaro P. Macromolecules, 2008, 41: 1034-1040. doi:10.1021/ma071665phttp://dx.doi.org/10.1021/ma071665p
Shoji Y, Higashihara T, Watanabe J, Ueda M. Chem Lett, 2009, 38(7): 716-717. doi:10.1246/cl.2009.716http://dx.doi.org/10.1246/cl.2009.716
Theo J D, Eduardo M, Jeffrey J H, Erik S W, Terry L S. Macromolecules, 2008, 41: 2474-2483
Shoji Y, Ishige R, Higashihara T, Watanabe J, Ueda M. Macromolecules, 2010, 43(2): 805-810. doi:10.1021/ma9021828http://dx.doi.org/10.1021/ma9021828
Shoji Y, Ishige R, Higashihara T, Kawauchi S, Watanabe J, Ueda M. Macromolecules, 2010, 43(21): 8950-8956. doi:10.1021/ma101751ehttp://dx.doi.org/10.1021/ma101751e
Shoji Y, Ishige R, Higashihara T, Morikawa J, Hashimoto T, Takahara A, Watanabe J, Ueda M. Macromolecules, 2013, 46(3): 747-755. doi:10.1021/ma302486shttp://dx.doi.org/10.1021/ma302486s
Sasaki R, Takahashi Y, Hayashi Y, Kawauchi S. J Phys Chem B, 2020, 124(5): 881-889. doi:10.1021/acs.jpcb.9b08158http://dx.doi.org/10.1021/acs.jpcb.9b08158
Guerra V, Wan C Y, McNally T. Prog Mater Sci, 2019, 100: 170-186. doi:10.1016/j.pmatsci.2018.10.002http://dx.doi.org/10.1016/j.pmatsci.2018.10.002
Ruan K P, Shi X T, Guo Y Q, Gu J W. Compos Commun, 2020, 22: 100518. doi:10.1016/j.coco.2020.100518http://dx.doi.org/10.1016/j.coco.2020.100518
Meziani M J, Song W L, Wang P, Lu F S, Hou Z L, Anderson A, Maimaiti H, Sun Y P. Chemphyschem, 2015, 16: 1339-1346. doi:10.1002/cphc.201402814http://dx.doi.org/10.1002/cphc.201402814
Yang N N, Zeng X L, Lu J B, Sun R, Wong C P. Appl Phys Lett, 2018, 113: 171904. doi:10.1063/1.5050293http://dx.doi.org/10.1063/1.5050293
Zhou S S, Xu T L, Jiang F, Song N, Shi L Y, Ding P. J Mater Chem C, 2019, 7: 13896-13903. doi:10.1039/c9tc04381khttp://dx.doi.org/10.1039/c9tc04381k
Chen J, Huang X Y, Sun B, Jiang P K. ACS Nano, 2019, 13(1): 337-345. doi:10.1021/acsnano.8b06290http://dx.doi.org/10.1021/acsnano.8b06290
Dong J, Cao L, Li Y, Wu Z Q, Teng C Q. Compos Sci Technol, 2020, 196: 108242. doi:10.1016/j.compscitech.2020.108242http://dx.doi.org/10.1016/j.compscitech.2020.108242
Cao L, Wang J J, Dong J, Zhao X, Li H B, Zhang Q H. Compos Part B-Eng, 2020, 188: 107882. doi:10.1016/j.compositesb.2020.107882http://dx.doi.org/10.1016/j.compositesb.2020.107882
Ma L L, Wang B X, Zhao S Y, Hao C C, Guo H Q, Lei Q Q. J Mater Sci Mater Electron, 2019, 30: 20302-20310. doi:10.1007/s10854-019-02417-3http://dx.doi.org/10.1007/s10854-019-02417-3
Li L H, Chen Y, Behan G, Zhang H Z, Petravic M, Glushenkov A M. J Mater Chem, 2011, 21(32): 11862-11866. doi:10.1039/c1jm11192bhttp://dx.doi.org/10.1039/c1jm11192b
Xiao F, Naficy S, Casillas G, Khan M H, Katkus T, Jiang L, Liu H K, Li H J, Huang Z G. Adv Mater, 2015, 27(44): 7196-7203. doi:10.1002/adma.201502803http://dx.doi.org/10.1002/adma.201502803
Wang M J, Jiao Z Y, Chen Y P, Hou X, Fu L, Wu Y M, Li S Y, Jiang N, Yu J H. Compos Part A-Appl S, 2018, 109: 321-329. doi:10.1016/j.compositesa.2018.03.023http://dx.doi.org/10.1016/j.compositesa.2018.03.023
Min Y J, Kang K H, Kim D E. Nano Res, 2018, 11(5): 2366-2378. doi:10.1007/s12274-017-1856-0http://dx.doi.org/10.1007/s12274-017-1856-0
Wang T, Wang M J, Fu L, Duan Z H, Chen Y P, Hou X, Wu Y M, Li S Y, Guo L C, Kang R Y, Jiang N, Yu J H. Sci Rep, 2018, 8(1): 1557. doi:10.1038/s41598-018-19945-3http://dx.doi.org/10.1038/s41598-018-19945-3
Hwang G H, Kwon Y S, Lee J S, Jeong Y G. J Appl Polym Sci, 2020: 50324. doi:10.1002/app.50324http://dx.doi.org/10.1002/app.50324
Tanimoto M, Yamagata T, Miyata K, Ando S. ACS Appl Mater Interfaces, 2013, 5(10): 4374-4382. doi:10.1021/am400615zhttp://dx.doi.org/10.1021/am400615z
Tanimoto M, Ando S. Compos Sci Technol, 2016, 123: 268-275. doi:10.1016/j.compscitech.2015.12.022http://dx.doi.org/10.1016/j.compscitech.2015.12.022
Haruki M, Tada J, Funaki R, Onishi H, Tada Y. Thermochim Acta, 2020, 684: 178491. doi:10.1016/j.tca.2019.178491http://dx.doi.org/10.1016/j.tca.2019.178491
Wu S Y, Ladani R B, Zhang J, Bafekrpour E, Ghorbani K, Mouritz A P, Kinloch A J, Wang C H. Carbon, 2015, 94: 607-618. doi:10.1016/j.carbon.2015.07.026http://dx.doi.org/10.1016/j.carbon.2015.07.026
Kim K, Ju H, Kim J. Compos Sci Technol, 2016, 123: 99-105. doi:10.1016/j.compscitech.2015.12.004http://dx.doi.org/10.1016/j.compscitech.2015.12.004
Lin Z Y, Liu Y, Raghavan S, Moon K S, Sitaraman S K, Wong C P. ACS Appl Mater Interfaces, 2013, 5(15): 7633-7640. doi:10.1021/am401939zhttp://dx.doi.org/10.1021/am401939z
Yorifuji D, Ando S. J Mater Chem, 2011, 21(12): 4402-4407. doi:10.1039/c0jm04243ahttp://dx.doi.org/10.1039/c0jm04243a
Yuan D B, Gao Y F, Guo Z X, Yu J. J Appl Polym Sci, 2017, 134(40): 45371. doi:10.1002/app.45371http://dx.doi.org/10.1002/app.45371
Yorifuji D, Ando S. Macromol Chem Phys, 2010, 211(19): 2118-2124. doi:10.1002/macp.201000294http://dx.doi.org/10.1002/macp.201000294
Chae B, Hong D G, Jung Y M, Won J C, Lee S W. Spectrochim Acta A, 2018, 195: 1-6. doi:10.1016/j.saa.2018.01.025http://dx.doi.org/10.1016/j.saa.2018.01.025
Uchida S, Murakami T, Iwamura T, Ishige R, Ando S. RSC Advances, 2017, 7(25): 15492-15499. doi:10.1039/c7ra00760dhttp://dx.doi.org/10.1039/c7ra00760d
Uchida S, Ishige R, Ando S. Polymers, 2017, 9(7): 263. doi:10.3390/polym9070263http://dx.doi.org/10.3390/polym9070263
Zhang G D, Fan L, Bai L, He M H, Zhai L, Mo S. Chinese J Polym Sci, 2018, 36(12): 1394-1402. doi:10.1007/s10118-018-2155-2http://dx.doi.org/10.1007/s10118-018-2155-2
0
浏览量
430
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构