浏览全部资源
扫码关注微信
北京分子科学国家实验室 高分子化学与物理教育部重点实验室 北京大学化学与分子工程学院 北京 100871
[ "宛新华,男,1964年生. 北京大学教授,1985、1991年分别于合肥工业大学、中国纺织大学,获工学学士和工学博士学位. 入选教育部长江学者奖励计划(特聘教授)、百千万人才工程国家级人选、教育部跨世纪优秀人才培养计划. 获国家杰出青年基金、国家自然科学奖(三等,排名2)、中国化学会高分子科学创新奖. 主要研究方向为手性功能材料、高性能高分子材料、有机/无机杂化材料等,已发表SCI收录论文200余篇,撰写6本英文书的章节. 现为《Australian Journal of Chemistry》《高分子学报》副主编;《ACS Macro Letter》顾问编委;《Chirality》《Chinese Journal of Polymer Science》《Science China Chemistry》《中国科学化学》《高等学校化学学报》《功能高分子学报》《高分子材料科学与工程》编委." ]
纸质出版日期:2021-08-20,
网络出版日期:2021-06-21,
收稿日期:2021-03-25,
修回日期:2021-05-07,
扫 描 看 全 文
汪胜,张洁,宛新华.光学活性螺旋聚(3,5-二取代苯乙炔):构象调控、手性传递与自组装[J].高分子学报,2021,52(08):898-911.
Wang Sheng,Zhang Jie,Wan Xin-hua.Optically Active Helical Poly(3,5-disubstituted phenylacetylene): Conformation Regulation, Chirality Transfer, and Self-assembly[J].ACTA POLYMERICA SINICA,2021,52(08):898-911.
汪胜,张洁,宛新华.光学活性螺旋聚(3,5-二取代苯乙炔):构象调控、手性传递与自组装[J].高分子学报,2021,52(08):898-911. DOI: 10.11777/j.issn1000-3304.2021.21096.
Wang Sheng,Zhang Jie,Wan Xin-hua.Optically Active Helical Poly(3,5-disubstituted phenylacetylene): Conformation Regulation, Chirality Transfer, and Self-assembly[J].ACTA POLYMERICA SINICA,2021,52(08):898-911. DOI: 10.11777/j.issn1000-3304.2021.21096.
聚苯乙炔衍生物是重要的动态螺旋聚合物,具有丰富可调的螺旋构象,在手性识别、对映体拆分、不对称催化、多通道传感、圆偏振发光等领域的潜在应用正受到越来越多的关注. 本文总结了近年来笔者在聚(3
5-二取代苯乙炔)研究中取得的主要进展,包括:
cis-cisoid
螺旋构象的形成条件、影响因素与调控规律,手性双重传递模式与可调控的手性放大规律,有趣的自组装行为和超分子结构. 最后,对螺旋聚苯乙炔衍生物手性功能材料今后的研究作了展望.
Poly(phenylacetylene) (PPA) derivatives are important dynamic helical polymers with rich and adjustable helical conformations
which have received ever-increasing attention due to their potential applications in the fields of chiral recognition
enantiomeric resolution
asymmetric catalysis
multi-channel sensor
circularly polarized luminescence
etc.
This feature article summarizes the recent research progress of our group on poly-(3
5-disubstituted phenylacetylene)
including the influencing factors and regulation rules of
cis-cisoid
helical conformation
a novel doublet chirality transfer (DCT) mode
the adjustable chiral amplification
as well as its interesting self-assembly behavior. By introducing intramolecular hydrogen bonding or n→
π
* interactions
cis-cisoid
helix can be obtained and stabilized in solution
the formation of which can be tuned by changing the size of pendant groups
solvents
additives
and temperature
etc
. Based on this disubstitution structure
a new model of doublet chirality transfer is put forward
which can be used to design various PPA functional materials and attenuate the possible antagonism. To achieve a good DCT
high
cis
structure of main chain
and strong intramolecular hydrogen bonds are indispensible. Different chiral amplifications in a single copolymer system
normal and abnormal "sergeants-and-soldiers" effects
can be achieved by tuning the conformational transition between
cis-cisoid
and
cis-transoid
helices
which can be well-explained by using the modified Ising model. Moreover
interesting self-assembly behavior including the self-assembly of amphiphilic rod-rod block copolymers and the conformational transition-induced self-assembly are observed in poly(3
5-disubstituted phenylacetylene). For the former
by modulating the composition of block copolymers
water contents
and initial copolymer concentration
the aggregates can transform from the spherical micelles to the worm-like micelles
multi-arm worm-like micelles
and vesicles. For the latter
hydrogen bonds driven conformation autoregulation and sol-gel transition are achieved for PPA homopolymer. The self-assembly structures can sequentially evolve from vesicles to nanobelts to helical strands during the process of conformational transition for PPA block copolymers. Finally
the future research directions of poly(3
5-disubstituted phenylacetylene) as chiral functional materials are prospected.
聚(35-二取代苯乙炔)螺旋构象手性传递手性放大自组装
Poly(35-disubstituted phenylacetylene)Helical conformationChirality transferChiral amplificationSelf-assembly
Lam J W Y, Tang B Z. Acc Chem Res, 2005, 38(9): 745-754. doi:10.1021/ar040012fhttp://dx.doi.org/10.1021/ar040012f
Nonokawa R, Yashima E. J Am Chem Soc, 2003, 125(5): 1278-1283. doi:10.1021/ja028348chttp://dx.doi.org/10.1021/ja028348c
Deng Enting(邓恩停), Bi Wanying(毕婉莹), Liu Bo(刘博), Zhang Lili(张丽丽), Shen Jun(沈军). Acta Polymerica Sinica(高分子学报), 2020, 51(2): 214-220. doi:10.11777/j.issn1000-3304.2019.19116http://dx.doi.org/10.11777/j.issn1000-3304.2019.19116
Shimomura K, Ikai T, Kanoh S, Yashima E, Maeda K. Nat Chem, 2014, 6: 429-434. doi:10.1038/nchem.1916http://dx.doi.org/10.1038/nchem.1916
Shi G, Dai X, Xu Q, Shen J, Wan X H. Polym Chem, 2021, 12(2): 242-253. doi:10.1039/d0py01398fhttp://dx.doi.org/10.1039/d0py01398f
Shi G, Dai X, Zhou Y, Zhang J, Shen J, Wan X H. Polym Chem, 2020, 11(18): 3179-3187. doi:10.1039/d0py00205dhttp://dx.doi.org/10.1039/d0py00205d
Tang Z L, Iida H, Hu H Y, Yashima E. ACS Macro Lett, 2012, 1(2): 261-265. doi:10.1021/mz200161shttp://dx.doi.org/10.1021/mz200161s
Shi Ge(史歌), Xu Qian(徐茜), Dai Xiao(代枭), Zhang Jie(张洁), Shen Jun(沈军), Wan Xinhua(宛新华). Chem JChinese Universities(高等学校化学学报), 2021, DOI: 10.7503/cjcu20210062http://dx.doi.org/10.7503/cjcu20210062
Zheng Y J, Cui J X, Zheng J, Wan X H. J Mater Chem, 2010, 20: 5915-5922. doi:10.1039/b927360chttp://dx.doi.org/10.1039/b927360c
Okoshi K, Sakajiri K, Kumaki J, Yashima E. Macromolecules, 2005, 38(10): 4061-4064. doi:10.1021/ma0503312http://dx.doi.org/10.1021/ma0503312
Yu Z Q, Lam J W Y, Zhu C Z, Chen E Q, Tang B Z. Macromolecules, 2013, 46(3): 588-596. doi:10.1021/ma302540khttp://dx.doi.org/10.1021/ma302540k
Zhao B, Pan K, Deng J P. Macromolecules, 2018, 51(18): 7104-7111. doi:10.1021/acs.macromol.8b01545http://dx.doi.org/10.1021/acs.macromol.8b01545
Lu N, Gao X, Pan M, Zhao B, Deng J P. Macromolecules, 2020, 53(18): 8041-8049. doi:10.1021/acs.macromol.0c00638http://dx.doi.org/10.1021/acs.macromol.0c00638
Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Chem Rev, 2009, 109(11): 6102-6211. doi:10.1021/cr900162qhttp://dx.doi.org/10.1021/cr900162q
Cheuk K K L, Lam J W Y, Chen J W, Lai L M, Tang B Z. Macromolecules, 2003, 36(16): 5947-5959. doi:10.1021/ma0344543http://dx.doi.org/10.1021/ma0344543
Shi G, Wang S, Guan X, Zhang J, Wan X H. Chem Commun, 2018, 54(85): 12081-12084. doi:10.1039/c8cc05856chttp://dx.doi.org/10.1039/c8cc05856c
Maeda K, Mochizuki H, Watanabe M, Yashima E. J Am Chem Soc, 2006, 128(23): 7639-7650. doi:10.1021/ja060858+http://dx.doi.org/10.1021/ja060858+
Li S, Liu K, Kuang G, Masuda T, Zhang A. Macromolecules, 2014, 47(10): 3288-3296. doi:10.1021/ma5003529http://dx.doi.org/10.1021/ma5003529
Louzao I, Seco J M, Quiñoá E, Riguera R. Angew Chem Int Ed, 2010, 49(8): 1430-1433. doi:10.1002/anie.200905222http://dx.doi.org/10.1002/anie.200905222
Freire F, Seco J M, Quiñoá E, Riguera R. Angew Chem Int Ed, 2011, 50(49): 11692-11696. doi:10.1002/anie.201105769http://dx.doi.org/10.1002/anie.201105769
Sakai R, Sakai N, Satoh T, Li W, Zhang A, Kakuchi T. Macromolecules, 2011, 44(11): 4249-4257. doi:10.1021/ma200710rhttp://dx.doi.org/10.1021/ma200710r
Wang S, Feng X Y, Zhao Z Y, Zhang J, Wan X H. Macromolecules, 2016, 49(22): 8407-8417. doi:10.1021/acs.macromol.6b02116http://dx.doi.org/10.1021/acs.macromol.6b02116
Zhao Z Y, Wang S, Ye X C, Zhang J, Wan X H. ACS Macro Lett, 2017, 6(3): 205-209. doi:10.1021/acsmacrolett.6b00901http://dx.doi.org/10.1021/acsmacrolett.6b00901
Freire F, Quinoa E, Riguera R. Chem Commun, 2017, 53(3): 481-492. doi:10.1039/c6cc05598bhttp://dx.doi.org/10.1039/c6cc05598b
Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Chem Rev, 2016, 116(22): 13752-13990. doi:10.1021/acs.chemrev.6b00354http://dx.doi.org/10.1021/acs.chemrev.6b00354
Wang S, Feng X Y, Zhang J, Yu P, Guo Z X, Li Z B, Wan X H. Macromolecules, 2017, 50(9): 3489-3499. doi:10.1021/acs.macromol.7b00615http://dx.doi.org/10.1021/acs.macromol.7b00615
Wang S, Chen J X, Feng X Y, Shi G, Zhang J, Wan X H. Macromolecules, 2017, 50(12): 4610-4615. doi:10.1021/acs.macromol.7b01028http://dx.doi.org/10.1021/acs.macromol.7b01028
Newberry R W, Raines R T. Acc Chem Res, 2017, 50(8): 1838-1846. doi:10.1021/acs.accounts.7b00121http://dx.doi.org/10.1021/acs.accounts.7b00121
Paulini R, Müller K, Diederich F. Angew Chem Int Ed, 2005, 44(12): 1788-1805. doi:10.1002/anie.200462213http://dx.doi.org/10.1002/anie.200462213
Wang S, Shi G, Guan X Y, Zhang J, Wan X H. Macromolecules, 2018, 51(4): 1251-1259. doi:10.1021/acs.macromol.8b00078http://dx.doi.org/10.1021/acs.macromol.8b00078
Wang S, Cai S L, Zhang J, Wan X H. Chinese J Polym Sci, 2020, 38(7): 685-695. doi:10.1007/s10118-020-2376-zhttp://dx.doi.org/10.1007/s10118-020-2376-z
Wang S, Feng X Y, Zhang J, Wan X H. Chin J Chem, 2020, 38(6): 570-576. doi:10.1002/cjoc.202000020http://dx.doi.org/10.1002/cjoc.202000020
Green M M, Park J W, Sato T, Teramoto A, Lifson S, Selinger R L B, Selinger J V. Angew Chem Int Ed, 1999, 38(21): 3138-3154. doi:10.1002/(sici)1521-3773(19991102)38:21<3138::aid-anie3138>3.0.co;2-chttp://dx.doi.org/10.1002/(sici)1521-3773(19991102)38:21<3138::aid-anie3138>3.0.co;2-c
Sato T, Terao K, Teramoto A, Fujiki M. Macromolecules, 2002, 35(14): 5355-5357. doi:10.1021/ma020426thttp://dx.doi.org/10.1021/ma020426t
Freire F, Quiñoá E, Riguera R. Chem Rev, 2016, 116(3): 1242-1271. doi:10.1021/acs.chemrev.5b00280http://dx.doi.org/10.1021/acs.chemrev.5b00280
Cheuk K K L, Li B S, Lam J W Y, Xie Y, Tang B Z. Macromolecules, 2008, 41(16): 5997-6005. doi:10.1021/ma800976ehttp://dx.doi.org/10.1021/ma800976e
Li B S, Cheuk K K L, Salhi F, Lam J W Y, Cha J A K, Xiao X D, Bai C L, Tang B Z. Nano Lett, 2001, 1(6): 323-328. doi:10.1021/nl015540ohttp://dx.doi.org/10.1021/nl015540o
Sakurai S i, Okoshi K, Kumaki J, Yashima E. Angew Chem Int Ed, 2006, 45(8): 1245-1248. doi:10.1002/anie.200503136http://dx.doi.org/10.1002/anie.200503136
Arias S, Freire F, Quiñoá E, Riguera R. Angew Chem Int Ed, 2014, 53(50): 13720-13724. doi:10.1002/anie.201406884http://dx.doi.org/10.1002/anie.201406884
Zhao B, Deng J R, Deng J P. ACS Macro Lett, 2017, 6(1): 6-10. doi:10.1021/acsmacrolett.6b00808http://dx.doi.org/10.1021/acsmacrolett.6b00808
Chen J X, Cai S L, Wang R, Wang S, Zhang J, Wan X H. Macromolecules, 2020, 53(5): 1638-1644. doi:10.1021/acs.macromol.9b02504http://dx.doi.org/10.1021/acs.macromol.9b02504
Chen J X, Wang S, Shi G, Wang R, Cai S L, Zhang J, Wan X H. Macromolecules, 2018, 51(19): 7500-7508. doi:10.1021/acs.macromol.8b01512http://dx.doi.org/10.1021/acs.macromol.8b01512
Changeux J P. Nat Rev Mol Cell Biol, 2013, 14(12): 819-829. doi:10.1038/nrm3695http://dx.doi.org/10.1038/nrm3695
Liu H, Wang R, Wei J, Cheng C, Zheng Y, Pan Y, He X, Ding M, Tan H, Fu Q. J Am Chem Soc, 2018, 140 (21): 6604-6610. doi:10.1021/jacs.8b01873http://dx.doi.org/10.1021/jacs.8b01873
Wang S, Tan J Y, Guan X Y, Chen J X, Zhang J, Wan X H. Eur Polym J, 2019, 118: 312-319. doi:10.1016/j.eurpolymj.2019.05.060http://dx.doi.org/10.1016/j.eurpolymj.2019.05.060
Cai S L, Chen J X, Wang S, Zhang J, Wan X H. Angew Chem Int Ed, 2021, 60(17): 9686-9692. doi:10.1002/anie.202100551http://dx.doi.org/10.1002/anie.202100551
San Jose B A, Akagi K. Polym Chem, 2013, 4(20): 5144-5161. doi:10.1039/c3py00063jhttp://dx.doi.org/10.1039/c3py00063j
0
浏览量
234
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构