浏览全部资源
扫码关注微信
超分子结构与材料国家重点实验室 吉林大学化学学院 长春 130012
[ "杨柏,男,1962年12月生. 现为吉林大学化学学院超分子结构与材料国家重点实验室教授. 1991年在吉林大学获得高分子化学与物理专业博士学位,师从沈家骢教授. 主要研究方向为碳点的合成、性能及应用研究;新型光电聚合物分子与半导体纳米晶水相杂化用于光电材料与器件;高性能聚合物纳米杂化光学材料;聚合物多级有序微结构与光子材料等. 作为第一完成人2007年获吉林省科学技术进步一等奖、2010年获国家自然科学奖二等奖、2009年获吉林省高等教育省级教学成果一等奖." ]
纸质出版日期:2021-08-20,
网络出版日期:2021-07-01,
收稿日期:2021-04-09,
修回日期:2021-04-30,
扫 描 看 全 文
乐妲,冯唐略,杨柏.碳化聚合物点的核壳结构与功能[J].高分子学报,2021,52(08):938-959.
Yue Da,Feng Tang-lue,Yang Bai.The Core-shell Structure and Functionality of Carbonized Polymer Dots[J].ACTA POLYMERICA SINICA,2021,52(08):938-959.
乐妲,冯唐略,杨柏.碳化聚合物点的核壳结构与功能[J].高分子学报,2021,52(08):938-959. DOI: 10.11777/j.issn1000-3304.2021.21105.
Yue Da,Feng Tang-lue,Yang Bai.The Core-shell Structure and Functionality of Carbonized Polymer Dots[J].ACTA POLYMERICA SINICA,2021,52(08):938-959. DOI: 10.11777/j.issn1000-3304.2021.21105.
碳化聚合物点作为一类新型的荧光碳纳米点,其高量子产率、独特的碳核和聚合物壳的杂化结构和功能在近些年引起了广泛关注. 本文通过系统总结、分析相关文献,揭示了碳化聚合物点不仅具有碳点的典型性质,也具有聚合物的性质. 强调了碳化聚合物点的聚合-碳化的本质,并详细讨论了碳化聚合物点的结构特点、制备方法方面的普适性和规律性以及光致发光的机制. 最后,基于碳化聚合物点的结构和性能调控,综述了其在传感、光电器件、催化和生物医学等不同领域的应用,并对碳化聚合物点的发展前景进行了展望.
As a new type of fluorescent carbon nanodots
carbonized polymer dots (CPDs) have attracted extensive attention in recent years due to their unique hybrid structure and functionalities of carbon core and polymer shell. This review systematically summarizes and analyzes the relevant literature
and reveals that CPDs have the properties of both traditional carbon dots and polymers. CPDs
showing aggregated/crosslinked and carbonized polymer hybrid nanostructures
are often produced from small molecules
polymers
or biomass by assembling
polymerization
crosslinking
and carbonization
via
"bottom-up" methods. We emphasize the important role of polymerization and carbonization during the formation of CPDs
which is the essence of the CPDs. Due to the abundance of carbon sources and various synthetic strategies
the structure and properties of CPDs are diverse. Moreover
we discuss the photoluminescence mechanism of CPDs
and systematically conclude that the complicated influence factors of photoluminescence can be mainly classified as molecule state
carbon core state
surface state and crosslink enhanced emission (CEE) effect. CPDs are endowed with many unique optical
electrical and other physical and chemical properties
which are attributed to the polymer/carbon hybrid structure. Finally
based on the structure and performance control on CPDs
the applications of CPDs in different fields such as sensing
optoelectronic devices
catalysis and biomedicine are reviewed
and the development prospect of CPDs is discussed.
碳化聚合物点碳点发光机理碳核聚合物壳
Carbonized polymer dotsCarbon dotsPhotoluminescence mechanismCarbon corePolymer shell
Tao S, Feng T, Zheng C, Zhu S, Yang B. J Phys Chem Lett, 2019, 10(17): 5182-5188. doi:10.1021/acs.jpclett.9b01384http://dx.doi.org/10.1021/acs.jpclett.9b01384
Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. Nano Res, 2015, 8(2): 355-381. doi:10.1007/s12274-014-0644-3http://dx.doi.org/10.1007/s12274-014-0644-3
Xia C, Zhu S, Feng T, Yang M, Yang B. Adv Sci, 2019, 6(23): 1901316. doi:10.1002/advs.201901316http://dx.doi.org/10.1002/advs.201901316
Liu J, Li D, Zhang K, Yang M, Sun H, Yang B. Small, 2018, 14(15): e1703919. doi:10.1002/smll.201703919http://dx.doi.org/10.1002/smll.201703919
Song Y, Zhu S, Shao J, Yang B. J Polym Sci, Part A: Polym Chem, 2017, 55(4): 610-615. doi:10.1002/pola.28416http://dx.doi.org/10.1002/pola.28416
Liu J, Li R, Yang B. ACS Cent Sci, 2020, 6(12): 2179-2195. doi:10.1021/acscentsci.0c01306http://dx.doi.org/10.1021/acscentsci.0c01306
Feng T, Tao S, Yue D, Zeng Q, Chen W, Yang B. Small, 2020, 16(31): e2001295. doi:10.1002/smll.202001295http://dx.doi.org/10.1002/smll.202001295
Zhu S, Zhang J, Wang L, Song Y, Zhang G, Wang H, Yang B. Chem Commun, 2012, 48(88): 10889-10891. doi:10.1039/c2cc36080bhttp://dx.doi.org/10.1039/c2cc36080b
Zhu S, Song Y, Shao J, Zhao X, Yang B. Angew Chem Int Ed, 2015, 54(49): 14626-14637. doi:10.1002/anie.201504951http://dx.doi.org/10.1002/anie.201504951
Zhu S, Wang L, Zhou N, Zhao X, Song Y, Maharjan S, Zhang J, Lu L, Wang H, Yang B. Chem Commun, 2014, 50(89): 13845-13848. doi:10.1039/c4cc05806bhttp://dx.doi.org/10.1039/c4cc05806b
Wang S, Liu J, Feng G, Ng L G, Liu B. Adv Funct Mater, 2019, 29(15): 1808365. doi:10.1002/adfm.201808365http://dx.doi.org/10.1002/adfm.201808365
Chen Y, Zhang Y, Lyu T, Wang Y, Yang X, Wu X. J Mater Chem C, 2019, 7(30): 9241-9247. doi:10.1039/c9tc02738fhttp://dx.doi.org/10.1039/c9tc02738f
Tao S, Zhu S, Feng T, Xia C, Song Y, Yang B. Mater Today Chem, 2017, 6: 13-25. doi:10.1016/j.mtchem.2017.09.001http://dx.doi.org/10.1016/j.mtchem.2017.09.001
Xia C, Tao S, Zhu S, Song Y, Feng T, Zeng Q, Liu J, Yang B. Chem Eur J, 2018, 24(44): 11303-11308. doi:10.1002/chem.201802712http://dx.doi.org/10.1002/chem.201802712
Lu S, Sui L, Wu M, Zhu S, Yong X, Yang B. Adv Sci, 2019, 6(2): 1801192. doi:10.1002/advs.201801192http://dx.doi.org/10.1002/advs.201801192
Gu J, Wang W, Zhang Q, Meng Z, Jia X, Xi K. RSC Adv, 2013, 3(36): 15589. doi:10.1039/c3ra41654bhttp://dx.doi.org/10.1039/c3ra41654b
Zeng Y W, Ma D K, Wang W, Chen J J, Zhou L, Zheng Y Z, Yu K, Huang S M. Appl Surf Sci, 2015, 342: 136-143. doi:10.1016/j.apsusc.2015.03.029http://dx.doi.org/10.1016/j.apsusc.2015.03.029
Shamsipur M, Barati A, Taherpour A A, Jamshidi M. J Phys Chem Lett, 2018, 9(15): 4189-4198. doi:10.1021/acs.jpclett.8b02043http://dx.doi.org/10.1021/acs.jpclett.8b02043
Tao S, Zhu S, Feng T, Zheng C, Yang B. Angew Chem Int Ed, 2020, 59(25): 9826-9840. doi:10.1002/anie.201916591http://dx.doi.org/10.1002/anie.201916591
Zheng M, Liu S, Li J, Qu D, Zhao H, Guan X, Hu X, Xie Z, Jing X, Sun Z. Adv Mater, 2014, 26(21): 3554-3560. doi:10.1002/adma.201306192http://dx.doi.org/10.1002/adma.201306192
Feng T, Zeng Q, Lu S, Yang M, Tao S, Chen Y, Zhao Y, Yang B. ACS Sustain Chem Eng, 2019, 7(7): 7047-7057. doi:10.1021/acssuschemeng.8b06832http://dx.doi.org/10.1021/acssuschemeng.8b06832
Song Y, Zhu S, Zhang S, Fu Y, Wang L, Zhao X, Yang B. J Mater Chem C, 2015, 3(23): 5976-5984. doi:10.1039/c5tc00813ahttp://dx.doi.org/10.1039/c5tc00813a
Deng L, Wang X, Kuang Y, Wang C, Luo L, Wang F, Sun X. Nano Res, 2015, 8(9): 2810-2821. doi:10.1007/s12274-015-0786-yhttp://dx.doi.org/10.1007/s12274-015-0786-y
Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B. Angew Chem Int Ed, 2013, 52(14): 3953-3957. doi:10.1002/anie.201300519http://dx.doi.org/10.1002/anie.201300519
Tao S, Song Y, Zhu S, Shao J, Yang B. Polymer, 2017, 116: 472-478. doi:10.1016/j.polymer.2017.02.039http://dx.doi.org/10.1016/j.polymer.2017.02.039
Wang B, Yu J, Sui L, Zhu S, Tang Z, Yang B, Lu S. Adv Sci, 2020, 8(1): 2001453
Wang L, Li W, Yin L, Liu Y, Guo H, Lai J, Han Y, Li G, Li M, Zhang J, Vajtai R, Ajayan P M, Wu M. Sci Adv, 2020, 6(40): 8, 2001453
Ding H, Wei J S, Zhang P, Zhou Z Y, Gao Q Y, Xiong H M. Small, 2018, 14(22): e1800612. doi:10.1002/smll.201800612http://dx.doi.org/10.1002/smll.201800612
Miao X, Qu D, Yang D, Nie B, Zhao Y, Fan H, Sun Z. Adv Mater, 2018, 30: 1704740. doi:10.1002/adma.201704740http://dx.doi.org/10.1002/adma.201704740
Jiang K, Wang Y, Gao X, Cai C, Lin H. Angew Chem Int Ed, 2018, 57(21): 6216-6220. doi:10.1002/anie.201802441http://dx.doi.org/10.1002/anie.201802441
Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, Huang Q, Wu A, Lin H. Adv Mater, 2015, 27(47): 7782-7787. doi:10.1002/adma.201503821http://dx.doi.org/10.1002/adma.201503821
Wu W, Zhan L, Fan W, Song J, Li X, Li Z, Wang R, Zhang J, Zheng J, Wu M, Zeng H. Angew Chem Int Ed, 2015, 54(22): 6540-6544. doi:10.1002/anie.201501912http://dx.doi.org/10.1002/anie.201501912
Peng H, Travas-Sejdic J. Chem Mater, 2009, 21(23): 5563-5565. doi:10.1021/cm901593yhttp://dx.doi.org/10.1021/cm901593y
Schneider J, Reckmeier C J, Xiong Y, von Seckendorff M, Susha A S, Kasák P, Rogach A L. J Phys Chem C, 2017, 121(3): 2014-2022. doi:10.1021/acs.jpcc.6b12519http://dx.doi.org/10.1021/acs.jpcc.6b12519
Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, Yang B. Adv Mater, 2017, 29: 1603443. doi:10.1002/adma.201603443http://dx.doi.org/10.1002/adma.201603443
Yuan F, Wang Z, Li X, Li Y, Tan Z, Fan L, Yang S. Adv Mater, 2017, 29: 1604436. doi:10.1002/adma.201604436http://dx.doi.org/10.1002/adma.201604436
Feng T, Zeng Q, Lu S, Yan X, Liu J, Tao S, Yang M, Yang B. ACS Photonics, 2017, 5(2): 502-510
Jiang L, Ding H, Xu M, Hu X, Li S, Zhang M, Zhang Q, Wang Q, Lu S, Tian Y, Bi H. Small, 2020, 16(19): e2000680. doi:10.1002/smll.202070107http://dx.doi.org/10.1002/smll.202070107
Li W, Liu Y, Wu M, Feng X, Redfern S A T, Shang Y, Yong X, Feng T, Wu K, Liu Z, Li B, Chen Z, Tse J S, Lu S, Yang B. Adv Mater, 2018, 30(31): e1800676. doi:10.1002/adma.201800676http://dx.doi.org/10.1002/adma.201800676
Liu Y, Yang Y, Peng Z, Liu Z, Chen Z, Shang L, Lu S, Zhang T. Nano Energy, 2019, 65: 104023. doi:10.1016/j.nanoen.2019.104023http://dx.doi.org/10.1016/j.nanoen.2019.104023
Qu S, Zhou D, Li D, Ji W, Jing P, Han D, Liu L, Zeng H, Shen D. Adv Mater, 2016, 28(18): 3516-3521. doi:10.1002/adma.201504891http://dx.doi.org/10.1002/adma.201504891
Tian Z, Zhang X, Li D, Zhou D, Jing P, Shen D, Qu S, Zboril R, Rogach A L. Adv Opt Mater, 2017, 5(19): 1700416. doi:10.1002/adom.201700416http://dx.doi.org/10.1002/adom.201700416
Holá K, Sudolská M, Kalytchuk S, Nachtigallová D, Rogach A L, Otyepka M, Zbořil R. ACS Nano, 2017, 11(12): 12402-12410. doi:10.1021/acsnano.7b06399http://dx.doi.org/10.1021/acsnano.7b06399
Krysmann M J, Kelarakis A, Dallas P, Giannelis E P. J Am Chem Soc, 2012, 134(2): 747-750. doi:10.1021/ja204661rhttp://dx.doi.org/10.1021/ja204661r
Zhu S, Zhao X, Song Y, Lu S, Yang B. Nano Today, 2016, 11(2): 128-132. doi:10.1016/j.nantod.2015.09.002http://dx.doi.org/10.1016/j.nantod.2015.09.002
Kasprzyk W, Świergosz T, Bednarz S, Walas K, Bashmakova N V, Bogdal D. Nanoscale, 2018, 10(29): 13889-13894. doi:10.1039/c8nr03602khttp://dx.doi.org/10.1039/c8nr03602k
Sciortino A, Marino E, Dam B, Schall P, Cannas M, Messina F. J Phys Chem Lett, 2016, 7(17): 3419-3423. doi:10.1021/acs.jpclett.6b01590http://dx.doi.org/10.1021/acs.jpclett.6b01590
Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016, 10(1): 484-491. doi:10.1021/acsnano.5b05406http://dx.doi.org/10.1021/acsnano.5b05406
Li X, Zhang S, Kulinich S A, Liu Y, Zeng H. Sci Rep, 2014, 4: 4976
Tao S, Lu S, Geng Y, Zhu S, Redfern S A T, Song Y, Feng T, Xu W, Yang B. Angew Chem Int Ed, 2018, 57(9): 2393-2398. doi:10.1002/anie.201712662http://dx.doi.org/10.1002/anie.201712662
Tong D, Li W, Zhao Y, Zhang L, Zheng J, Cai T, Liu S. RSC Adv, 2016, 6(99): 97137-97141. doi:10.1039/c6ra17068dhttp://dx.doi.org/10.1039/c6ra17068d
Liu S G, Liu T, Li N, Geng S, Lei J L, Li N B, Luo H Q. J Phys Chem C, 2017, 121(12): 6874-6883. doi:10.1021/acs.jpcc.6b12695http://dx.doi.org/10.1021/acs.jpcc.6b12695
Vallan L, Urriolabeitia E P, Ruipérez F, Matxain J M, Canton-Vitoria R, Tagmatarchis N, Benito A M, Maser W K. J Am Chem Soc, 2018, 140(40): 12862-12869. doi:10.1021/jacs.8b06051http://dx.doi.org/10.1021/jacs.8b06051
Liu M L, Chen B B, Li C M, Huang C Z. Green Chem, 2019, 21(3): 449-471. doi:10.1039/c8gc02736fhttp://dx.doi.org/10.1039/c8gc02736f
Dhenadhayalan N, Lin K C, Saleh T A. Small, 2020, 16(1): e1905767. doi:10.1002/smll.201905767http://dx.doi.org/10.1002/smll.201905767
Yang M, Tang Q, Meng Y, Liu J, Feng T, Zhao X, Zhu S, Yu W, Yang B. Langmuir, 2018, 34(26): 7767-7775. doi:10.1021/acs.langmuir.8b00947http://dx.doi.org/10.1021/acs.langmuir.8b00947
Yang M, Kong W, Li H, Liu J, Huang H, Liu Y, Kang Z. Microchim Acta, 2015, 182(15-16): 2443-2450. doi:10.1007/s00604-015-1592-7http://dx.doi.org/10.1007/s00604-015-1592-7
Zhang H Y, Wang Y, Xiao S, Wang H, Wang J H, Feng L. Biosens Bioelectron, 2017, 87: 46-52. doi:10.1016/j.bios.2016.08.010http://dx.doi.org/10.1016/j.bios.2016.08.010
Lesani P, Singh G, Viray C M, Ramaswamy Y, Zhu D M, Kingshott P, Lu Z, Zreiqat H. ACS Appl Mater Interfaces, 2020, 12(16): 18395-18406. doi:10.1021/acsami.0c05217http://dx.doi.org/10.1021/acsami.0c05217
Zhang M, Wang W, Yuan P, Chi C, Zhang J, Zhou N. Chem Eng J, 2017, 330: 1137-1147. doi:10.1016/j.cej.2017.07.166http://dx.doi.org/10.1016/j.cej.2017.07.166
Gao W, Song H, Wang X, Liu X, Pang X, Zhou Y, Gao B, Peng X. ACS Appl Mater Interfaces, 2018, 10(1): 1147-1154. doi:10.1021/acsami.7b16991http://dx.doi.org/10.1021/acsami.7b16991
Atchudan R, Edison T, Aseer K R, Perumal S, Karthik N, Lee Y R. Biosens Bioelectron, 2018, 99: 303-311. doi:10.1016/j.bios.2017.07.076http://dx.doi.org/10.1016/j.bios.2017.07.076
Gao Y, Jiao Y, Lu W, Liu Y, Han H, Gong X, Xian M, Shuang S, Dong C. J Mater Chem B, 2018, 6(38): 6099-6107. doi:10.1039/c8tb01580ehttp://dx.doi.org/10.1039/c8tb01580e
Gu J, Li X, Zhou Z, Liu W, Li K, Gao J, Zhao Y, Wang Q. Nanoscale, 2019, 11(27): 13058-13068. doi:10.1039/c9nr03583dhttp://dx.doi.org/10.1039/c9nr03583d
Baig M M F, Chen Y C. J Colloid Interface Sci, 2017, 501: 341-349. doi:10.1016/j.jcis.2017.04.045http://dx.doi.org/10.1016/j.jcis.2017.04.045
Lin M, Zou H Y, Yang T, Liu Z X, Liu H, Huang C Z. Nanoscale, 2016, 8(5): 2999-3007. doi:10.1039/c5nr08177ghttp://dx.doi.org/10.1039/c5nr08177g
Hu G, Ge L, Li Y, Mukhtar M, Shen B, Yang D, Li J. J Colloid Interface Sci, 2020, 579: 96-108. doi:10.1016/j.jcis.2020.06.034http://dx.doi.org/10.1016/j.jcis.2020.06.034
Sun Z, Chen Z, Luo J, Zhu Z, Zhang X, Liu R, Wu Z C. Dyes Pigm, 2020, 176: 108227. doi:10.1016/j.dyepig.2020.108227http://dx.doi.org/10.1016/j.dyepig.2020.108227
Song W, Duan W, Liu Y, Ye Z, Chen Y, Chen H, Qi S, Wu J, Liu D, Xiao L, Ren C, Chen X. Anal Chem, 2017, 89(24): 13626-13633. doi:10.1021/acs.analchem.7b04211http://dx.doi.org/10.1021/acs.analchem.7b04211
Liu H, Li R S, Zhou J, Huang C Z. Analyst, 2017, 142(22): 4221-4227. doi:10.1039/c7an01136ahttp://dx.doi.org/10.1039/c7an01136a
Zhao X, Tang Q, Zhu S, Bu W, Yang M, Liu X, Meng Y, Yu W, Sun H, Yang B. Nanoscale, 2019, 11(19): 9526-9532. doi:10.1039/c9nr01118hhttp://dx.doi.org/10.1039/c9nr01118h
Cheng W, Xu J, Guo Z, Yang D, Chen X, Yan W, Miao P. J Mater Chem B, 2018, 6(36): 5775-5780. doi:10.1039/c8tb01271ghttp://dx.doi.org/10.1039/c8tb01271g
Jiang K, Zhang L, Lu J, Xu C, Cai C, Lin H. Angew Chem Int Ed, 2016, 55(25): 7231-7235. doi:10.1002/anie.201602445http://dx.doi.org/10.1002/anie.201602445
Liu Y, Li X, Zhang Q, Li W, Xie Y, Liu H, Shang L, Liu Z, Chen Z, Gu L, Tang Z, Zhang T, Lu S. Angew Chem Int Ed 2020, 59(4): 1718-1726. doi:10.1002/anie.201913910http://dx.doi.org/10.1002/anie.201913910
Yang M, Feng T, Chen Y, Liu J, Zhao X, Yang B. Appl Catal, B, 2020, 267: 118657. doi:10.1016/j.apcatb.2020.118657http://dx.doi.org/10.1016/j.apcatb.2020.118657
Zhang J, Chen J, Luo Y, Chen Y, Wei X, Wang G, Wang R. Appl Surf Sci, 2019, 466: 911-919. doi:10.1016/j.apsusc.2018.10.116http://dx.doi.org/10.1016/j.apsusc.2018.10.116
Feng T, Yu G, Tao S, Zhu S, Ku R, Zhang R, Zeng Q, Yang M, Chen Y, Chen W, Chen W, Yang B. J Mater Chem A, 2020, 8(19): 9638-9645. doi:10.1039/d0ta02496ahttp://dx.doi.org/10.1039/d0ta02496a
Lei Z, Xu S, Wan J, Wu P. Nanoscale, 2016, 8(4): 2219-2226. doi:10.1039/c5nr07335ahttp://dx.doi.org/10.1039/c5nr07335a
Wang L, Wu X, Guo S, Han M, Zhou Y, Sun Y, Huang H, Liu Y, Kang Z. J Mater Chem A, 2017, 5(6): 2717-2723. doi:10.1039/c6ta09580ahttp://dx.doi.org/10.1039/c6ta09580a
Wang M, Li Y, Fang J, Villa C J, Xu Y, Hao S, Li J, Liu Y, Wolverton C, Chen X, Dravid V P, Lai Y. Adv Energy Mater, 2019, 10(3): 1902736
Song H, Wu M, Tang Z, Tse J S, Yang B, Lu S. Angew Chem Int Ed, 2021, 60(13): 7234-7244. doi:10.1002/anie.202017102http://dx.doi.org/10.1002/anie.202017102
Zhu C, Zhai J, Dong S. Chem Commun, 2012, 48(75): 9367-9369. doi:10.1039/c2cc33844khttp://dx.doi.org/10.1039/c2cc33844k
Gao S, Chen Y, Fan H, Wei X, Hu C, Wang L, Qu L. J Mater Chem A, 2014, 2(18): 6320. doi:10.1039/c3ta15443bhttp://dx.doi.org/10.1039/c3ta15443b
Atchudan R, Edison T, Lee Y R. J Colloid Interface Sci, 2016, 482: 8-18. doi:10.1016/j.jcis.2016.07.058http://dx.doi.org/10.1016/j.jcis.2016.07.058
Hoang V C, Dinh K N, Gomes V G. J Mater Chem A, 2019, 7(39): 22650-22662. doi:10.1039/c9ta05559bhttp://dx.doi.org/10.1039/c9ta05559b
Cailotto S, Negrato M, Daniele S, Luque R, Selva M, Amadio E, Perosa A. Green Chem, 2020, 22(4): 1145-1149. doi:10.1039/c9gc03811fhttp://dx.doi.org/10.1039/c9gc03811f
Xu L, Bai X, Guo L, Yang S, Jin P, Yang L. Chem Eng J, 2019, 357: 473-486. doi:10.1016/j.cej.2018.09.172http://dx.doi.org/10.1016/j.cej.2018.09.172
Luo H, Liu Y, Dimitrov S D, Steier L, Guo S, Li X, Feng J, Xie F, Fang Y, Sapelkin A, Wang X, Titirici M M. J Mater Chem A, 2020, 8(29): 14690-14696. doi:10.1039/d0ta04431hhttp://dx.doi.org/10.1039/d0ta04431h
Li M, Wang M, Zhu L, Li Y, Yan Z, Shen Z, Cao X. Appl Catal B, 2018, 231: 269-276. doi:10.1016/j.apcatb.2018.03.027http://dx.doi.org/10.1016/j.apcatb.2018.03.027
Hazarika D, Karak N. Appl Surf Sci, 2016, 376: 276-285. doi:10.1016/j.apsusc.2016.03.165http://dx.doi.org/10.1016/j.apsusc.2016.03.165
Wang S, Li L, Zhu Z, Zhao M, Zhang L, Zhang N, Wu Q, Wang X, Li G. Small, 2019, 15(29): e1804515. doi:10.1002/smll.201804515http://dx.doi.org/10.1002/smll.201804515
Zhao Y, Zeng Q, Yu Y, Feng T, Zhao Y, Wang Z, Li Y, Liu C, Liu J, Wei H, Zhu S, Kang Z, Zhang H, Yang B. Mater Horizons, 2020, 7(10): 2719-2725. doi:10.1039/d0mh00955ehttp://dx.doi.org/10.1039/d0mh00955e
Wang Z, Yuan F, Li X, Li Y, Zhong H, Fan L, Yang S. Adv Mater, 2017, 29: 1702910. doi:10.1002/adma.201702910http://dx.doi.org/10.1002/adma.201702910
Wang C, Hu T, Chen Y, Xu Y, Song Q. ACS Appl Mater Interfaces, 2019, 11(25): 22332-22338. doi:10.1021/acsami.9b04345http://dx.doi.org/10.1021/acsami.9b04345
Shao J, Zhu S, Liu H, Song Y, Tao S, Yang B. Adv Sci, 2017, 4(12): 1700395. doi:10.1002/advs.201700395http://dx.doi.org/10.1002/advs.201700395
Zhou D, Zhai Y, Qu S, Li D, Jing P, Ji W, Shen D, Rogach A L. Small, 2017, 13(6): 1602055. doi:10.1002/smll.201602055http://dx.doi.org/10.1002/smll.201602055
Liu E, Li D, Zhou X, Zhou G, Xiao H, Zhou D, Tian P, Guo R, Qu S. ACS Sustain Chem Eng, 2019, 7(10): 9301-9308. doi:10.1021/acssuschemeng.9b00325http://dx.doi.org/10.1021/acssuschemeng.9b00325
He J, He Y, Chen Y, Lei B, Zhuang J, Xiao Y, Liang Y, Zheng M, Zhang H, Liu Y. Small, 2017, 13(26): 1700075. doi:10.1002/smll.201700075http://dx.doi.org/10.1002/smll.201700075
Wang F, Chen Y H, Liu C Y, Ma D G. Chem Commun, 2011, 47(12): 3502-3504. doi:10.1039/c0cc05391khttp://dx.doi.org/10.1039/c0cc05391k
Do S, Kwon W, Kim Y H, Kang S R, Lee T, Lee T W, Rhee S W. Adv Opt Mater, 2016, 4(2): 276-284. doi:10.1002/adom.201500488http://dx.doi.org/10.1002/adom.201500488
Ding Y, Zhang F, Xu J, Miao Y, Yang Y, Liu X, Xu B. RSC Adv, 2017, 7(46): 28754-28762. doi:10.1039/c7ra02421ehttp://dx.doi.org/10.1039/c7ra02421e
Xu J, Miao Y, Zheng J, Yang Y, Liu X. Adv Opt Mater, 2018, 6(14): 1800181. doi:10.1002/adom.201800181http://dx.doi.org/10.1002/adom.201800181
Xu J, Miao Y, Zheng J, Wang H, Yang Y, Liu X. Nanoscale, 2018, 10(23): 11211-11221. doi:10.1039/c8nr01834khttp://dx.doi.org/10.1039/c8nr01834k
Kwon W, Lee G, Do S, Joo T, Rhee S W. Small, 2014, 10(3): 506-513. doi:10.1002/smll.201301770http://dx.doi.org/10.1002/smll.201301770
Hasan M T, Gonzalez-Rodriguez R, Ryan C, Pota K, Green K, Coffer J L, Naumov A V. Nano Res, 2019, 12(5): 1041-1047. doi:10.1007/s12274-019-2337-4http://dx.doi.org/10.1007/s12274-019-2337-4
Zhang R, Zhao M, Wang Z, Wang Z, Zhao B, Miao Y, Zhou Y, Wang H, Hao Y, Chen G, Zhu F. ACS Appl Mater Interfaces, 2018, 10(5): 4895-4903. doi:10.1021/acsami.7b17969http://dx.doi.org/10.1021/acsami.7b17969
Zhou S, Tang R, Yin L. Adv Mater, 2017, 29(43): 1703682. doi:10.1002/adma.201703682http://dx.doi.org/10.1002/adma.201703682
Hui W, Yang Y, Xu Q, Gu H, Feng S, Su Z, Zhang M, Wang J, Li X, Fang J, Xia F, Xia Y, Chen Y, Gao X, Huang W. Adv Mater, 2020, 32(4): e1906374. doi:10.1002/adma.201906374http://dx.doi.org/10.1002/adma.201906374
Ji T, Guo B, Liu F, Zeng Q, Yu C, Du X, Jin G, Feng T, Zhu S, Li F, Yang B. Adv Mater Interfaces, 2018, 5(6): 1701519. doi:10.1002/admi.201701519http://dx.doi.org/10.1002/admi.201701519
Li D, Liang C, Ushakova E V, Sun M, Huang X, Zhang X, Jing P, Yoo S J, Kim J G, Liu E, Zhang W, Jing L, Xing G, Zheng W, Tang Z, Qu S, Rogach A L. Small, 2019, 15(50): e1905050. doi:10.1002/smll.201905050http://dx.doi.org/10.1002/smll.201905050
Liu J, Geng Y, Li D, Yao H, Huo Z, Li Y, Zhang K, Zhu S, Wei H, Xu W, Jiang J, Yang B. Adv Mater, 2020, 32(17): e1906641. doi:10.1002/adma.201906641http://dx.doi.org/10.1002/adma.201906641
Liu Y, Liu J, Zhang J, Li X, Lin F, Zhou N, Yang B, Lu L. Biomater Sci, 2019, 7(4): 1574-1583. doi:10.1039/c8bm01295dhttp://dx.doi.org/10.1039/c8bm01295d
Liu Y, Liu J, Zhang J, Li X, Lin F, Zhou N, Yang B, Lu L. ACS Omega, 2018, 3(7): 7888-7896. doi:10.1021/acsomega.8b01169http://dx.doi.org/10.1021/acsomega.8b01169
Geng X, Sun Y, Li Z, Yang R, Zhao Y, Guo Y, Xu J, Li F, Wang Y, Lu S, Qu L. Small, 2019, 15(48): e1901517. doi:10.1002/smll.201970259http://dx.doi.org/10.1002/smll.201970259
Li D, Jing P, Sun L, An Y, Shan X, Lu X, Zhou D, Han D, Shen D, Zhai Y, Qu S, Zbořil R, Rogach A L. Adv Mater, 2018, 30(13): e1705913. doi:10.1002/adma.201870092http://dx.doi.org/10.1002/adma.201870092
Li J, Yang S, Deng Y, Chai P, Yang Y, He X, Xie X, Kang Z, Ding G, Zhou H, Fan X. Adv Funct Mater, 2018, 28(30): 1800881. doi:10.1002/adfm.201800881http://dx.doi.org/10.1002/adfm.201800881
Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P. Adv Mater, 2015, 27(28): 4169-4177. doi:10.1002/adma.201500323http://dx.doi.org/10.1002/adma.201500323
Ge J, Jia Q, Liu W, Lan M, Zhou B, Guo L, Zhou H, Zhang H, Wang Y, Gu Y, Meng X, Wang P. Adv Healthc Mater, 2016, 5(6): 665-675. doi:10.1002/adhm.201500720http://dx.doi.org/10.1002/adhm.201500720
Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P. Adv Mater, 2018, 30(13): e1706090. doi:10.1002/adma.201870093http://dx.doi.org/10.1002/adma.201870093
Bao X, Yuan Y, Chen J, Zhang B, Li D, Zhou D, Jing P, Xu G, Wang Y, Holá K, Shen D, Wu C, Song L, Liu C, Zbořil R, Qu S. Light Sci Appl, 2018, 7: 91. doi:10.1038/s41377-018-0090-1http://dx.doi.org/10.1038/s41377-018-0090-1
Tong T, Hu H, Zhou J, Deng S, Zhang X, Tang W, Fang L, Xiao S, Liang J. Small, 2020, 16(13): e1906206. doi:10.1002/smll.202070068http://dx.doi.org/10.1002/smll.202070068
Liu J, Lu S, Tang Q, Zhang K, Yu W, Sun H, Yang B. Nanoscale, 2017, 9(21): 7135-7142. doi:10.1039/c7nr02128chttp://dx.doi.org/10.1039/c7nr02128c
0
浏览量
424
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构