浏览全部资源
扫码关注微信
高分子材料工程国家重点实验室(四川大学) 四川大学高分子研究所 成都 610065
E-mail: hyscu1988@scu.edu.cn
danyi@scu.edu.cn
纸质出版日期:2021-10-20,
网络出版日期:2021-06-29,
收稿日期:2021-04-09,
修回日期:2021-04-29,
扫 描 看 全 文
王梦瑶,江龙,沈彦峰等.聚乳酸链端烷基链长度对聚乳酸结晶性及水蒸气透过性的影响[J].高分子学报,2021,52(10):1334-1342.
Wang Meng-yao,Jiang Long,Shen Yan-feng,et al.Effect of the Length of Alkyl Chain in the End on the Crystallization and Water Vapor Permeability of Poly(L-lactide)[J].ACTA POLYMERICA SINICA,2021,52(10):1334-1342.
王梦瑶,江龙,沈彦峰等.聚乳酸链端烷基链长度对聚乳酸结晶性及水蒸气透过性的影响[J].高分子学报,2021,52(10):1334-1342. DOI: 10.11777/j.issn1000-3304.2021.21106.
Wang Meng-yao,Jiang Long,Shen Yan-feng,et al.Effect of the Length of Alkyl Chain in the End on the Crystallization and Water Vapor Permeability of Poly(L-lactide)[J].ACTA POLYMERICA SINICA,2021,52(10):1334-1342. DOI: 10.11777/j.issn1000-3304.2021.21106.
分别以十二醇、十八醇、二十四醇和二十八醇为引发剂引发左旋丙交酯(
L
-LA)开环聚合,合成了链端键接不同长度烷基链的聚乳酸,利用红外吸收光谱(FTIR)、核磁共振氢谱(
1
H-NMR)和凝胶渗透色谱(GPC)分析产物结构并计算产物的相对分子质量,通过示差扫描量热技术(DSC)对产物的结晶性能进行了分析,进一步通过薄膜水蒸气透过性实验分析了薄膜试样对水蒸气的透过性能.
1
H-NMR和GPC分析结果表明,已将烷基链键接到聚乳酸链端,且固定
L
-LA与脂肪醇的摩尔比,不同脂肪醇引发合成的试样的相对分子质量基本一致,与理论值相差不大. DSC分析结果表明,在80 ℃时,聚乳酸的结晶速率随链端烷基链长度的增加而增加,链端为二十四烷基时,可促进聚乳酸在高温下成核,进而促进聚乳酸结晶. 随相对分子质量增加,聚乳酸完全结晶时的结晶度略有降低. 水蒸气透过性实验结果表明,非晶聚乳酸薄膜对水蒸气的透过能力强于结晶聚乳酸薄膜,聚乳酸的相对分子质量对薄膜的水气透过性影响不大,因此可通过调控聚乳酸的聚集态结构实现对水蒸气透过性的调节,进而将聚乳酸包装材料更好地应用于市场.
Taking lauryl alcohol
stearyl alcohol
tetracosanol and octacosanol as initiator
respectively
the poly(
L
-lactide)s with different long terminal linear alkyl chains were synthesized by the ring opening polymerization of
L
-lactide. The molecular structures and molecular weight of the obtained poly(
L
-lactide)s were characterized by infrared spectroscopy(FTIR)
proton nuclear magnetic resonance spectroscopy (
1
H-NMR) and gel permeation chromatography(GPC). Besides
the crystallization behavior and water vapor permeability of synthesized poly(
L
-lactide)s were investigated by differential scanning calorimetry (DSC) and water vapor permeation instrument. The
1
H-NMR and GPC analysis results show that the alkyl chain was successfully bonded to the end of poly(
L
-lactide)s molecular chain
the molar ratio of
L
-LA to fatty alcohol was constant
and the molecular weight of the samples synthesized by different fatty alcohols was basically consistent with the theoretical value. DSC results display that the crystallization rate of poly(
L
-lactide)s increased with the increase of the length of alkyl chain at 80 ℃. Additionally
The tetradecane group at the end of poly(
L
-lactide)s molecular chain can promote the nucleation and the crystallization at high temperature. Crystallinity of completely crystallized poly(
L
-lactide)s decreased slightly with the increasing molecular weight. Furthermore
measurements on the water vapor transmission performance indicate that the water vapor transmission coefficients of amorphous poly(
L
-lactide) films were stronger than those of crystalline films. The molecular weight of poly(
L
-lactide)s had little effect on the water vapor permeability of the film
so the water vapor permeability can be adjusted by regulating the aggregation structure of poly(
L
-lactide)s
and the poly(
L
-lactide) packaging materials can be better applied to the market.
聚乳酸烷基链长度结晶性能水蒸气透过性能
Poly(L-lactide)sLength of alkyl chainCrystallizationWater vapor transmission property
Jariyasakoolroj P, Leelaphiwat P, Harnkarnsujarit N. J Sci Food Agr, 2020, 100(14): 5032-5045. doi:10.1002/jsfa.9497http://dx.doi.org/10.1002/jsfa.9497
Jariyasakoolroj P, Rojanaton N, Jarupan L. Polym Bull, 2020, 77(5): 2309-2323. doi:10.1007/s00289-019-02862-4http://dx.doi.org/10.1007/s00289-019-02862-4
Tsuji H, Iguchi K, Tashiro K, Arakawa Y. Polym Chem, 2020, 11(36): 5711-5724. doi:10.1039/d0py01115khttp://dx.doi.org/10.1039/d0py01115k
Rosen T, Goldberg I, Navarra W, Venditto V, Kol M. Angew Chem Int Ed, 2018, 57(24): 7191-7195. doi:10.1002/anie.201803063http://dx.doi.org/10.1002/anie.201803063
Lee S, Jin Y, Lim K T, Lee C H, Chun J H, Lee W K. Mol Cryst Liq Cryst, 2019,688(1): 14-21. doi:10.1080/15421406.2019.1651063http://dx.doi.org/10.1080/15421406.2019.1651063
Qian W H, Song T, Ye M, Xu P C, Lu G L, Huang X Y. Polym Chem, 2017, 8(28): 4098-4107. doi:10.1039/c7py00762khttp://dx.doi.org/10.1039/c7py00762k
Huang Y, Pan Y H, Wang W W, Jiang L, Dan Y. Mater Design, 2019, 162: 285-292. doi:10.1016/j.matdes.2018.11.055http://dx.doi.org/10.1016/j.matdes.2018.11.055
Chiu F C, Wang S W, Peng K Y, Lee R S. Polymer, 2012, 53(16): 3476-3484. doi:10.1016/j.polymer.2012.06.004http://dx.doi.org/10.1016/j.polymer.2012.06.004
Haynes D, Naskar A K, Singh A, Yang C C, Burg K J, Drews M, Harrison G, Smith D W. Macromolecules, 2007, 40(26): 9354-9360. doi:10.1021/ma0712192http://dx.doi.org/10.1021/ma0712192
Fan T T, Ye W Y, Du B B, Zhang Q, Gong L, Li J F, Lin S L, Fan Z Y, Liu Q. J Appl Polym Sci, 2019, 136(33): 47887. doi:10.1002/app.47887http://dx.doi.org/10.1002/app.47887
Zaaba N F, Jaafar M. Polym Eng Sci, 2020, 60(9): 2061-2075. doi:10.1002/pen.25511http://dx.doi.org/10.1002/pen.25511
Kowalczyk M, Pluta M, Piorkowska E, Krasnikova N. J Appl Polym Sci, 2012, 125(6): 4292-4301. doi:10.1002/app.36563http://dx.doi.org/10.1002/app.36563
Tsuji H, Tajima T. Macromol Mater Eng, 2014, 299(4): 430-435. doi:10.1002/mame.201470010http://dx.doi.org/10.1002/mame.201470010
Shen Y F, Huang Y, Jiang L, Dan Y. React Funct Polym, 2020, 148: 104486. doi:10.1016/j.reactfunctpolym.2020.104486http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104486
Lee W K, Losito I, Gardella J A, Hicks W L. Macromolecules, 2001, 34(9): 3000-3006. doi:10.1021/ma0000327http://dx.doi.org/10.1021/ma0000327
Glova A D, Melnikova S D, Mercurieva A A, Larin S V, Nazarychev V M, Polotsky A A, Lyulin S V. Phys Chem Chem Phys, 2021, 23(1): 457-469. doi:10.1039/d0cp04556jhttp://dx.doi.org/10.1039/d0cp04556j
Eslami H, Tzoganakis C, Mekonnen T H. Cellulose, 2020, 27(9): 5267-5284. doi:10.1007/s10570-020-03167-whttp://dx.doi.org/10.1007/s10570-020-03167-w
Bian Y F, Leng X F, Wei Z Y, Wang Z F, Tu Z, Wang Y S, Li Y. Biomacromolecules, 2019, 20(10): 3952-3968. doi:10.1021/acs.biomac.9b01020http://dx.doi.org/10.1021/acs.biomac.9b01020
Zhang Y J, Dayoub W, Chen G R, Lemaire M. Tetrahedron, 2012, 68(36): 7400-7407. doi:10.1016/j.tet.2012.06.080http://dx.doi.org/10.1016/j.tet.2012.06.080
Belotti D, Cantagrel G, Combellas C, Cossy J, Kanoufi F, Nunige S. New J Chem, 2005, 29(6): 761-764. doi:10.1039/b501096ahttp://dx.doi.org/10.1039/b501096a
Long L, Wu S G, Sun J, Wang J, Zhang H J, Qi G H. Anim Nutr, 2015, 1(4): 293-298. doi:10.1016/j.aninu.2015.12.005http://dx.doi.org/10.1016/j.aninu.2015.12.005
Tsuji H, Sugiura Y, Sakamoto Y, Bouapao L. Itsuno S. Polymer, 2008, 49(5): 1385-1397. doi:10.1016/j.polymer.2008.01.029http://dx.doi.org/10.1016/j.polymer.2008.01.029
Tsuji H, Sugimoto S. Polymer, 2014, 55(18): 4786-4798. doi:10.1016/j.polymer.2014.07.012http://dx.doi.org/10.1016/j.polymer.2014.07.012
Fischer E W, Sterzel H J, Wegner G. Colloid Polym Sci, 1973, 251(11): 980-990. doi:10.1007/bf01498927http://dx.doi.org/10.1007/bf01498927
Save M, Schappacher M, Soum A. Macromol Chem Phys, 2002, 203(5-6): 889-899. doi:10.1002/1521-3935(20020401)203:5/6<889::aid-macp889>3.0.co;2-ohttp://dx.doi.org/10.1002/1521-3935(20020401)203:5/6<889::aid-macp889>3.0.co;2-o
Baran J, Duda A, Kowalski A, Szymanski R, Penczek S. Macromol Rapid Commun, 1997, 18(4): 325-333. doi:10.1002/marc.1997.030180409http://dx.doi.org/10.1002/marc.1997.030180409
Zhang Hongan(张鸿安), Teng Jiachun(滕家春), Ge Weidong(葛卫东), Zhang Mingshu(张明枢). Chemical Journal of Chinese Uuiversities(高等学校化学学报), 1985, (8): 753-757
Jiang L, Shen T F, Xu P W, Zhao X Y, Li X J, Dong W F, Ma P M, Chen M Q. e-Polymers, 2016, 16(1): 1-13. doi:10.1515/epoly-2015-0179http://dx.doi.org/10.1515/epoly-2015-0179
Saeidlou S, Huneault M A, Li H B, Park C B. Prog Polym Sci, 2012, 37(12): 1657-1677. doi:10.1016/j.progpolymsci.2012.07.005http://dx.doi.org/10.1016/j.progpolymsci.2012.07.005
Tsuji H. Adv Drug Deliv Rev, 2016, 107: 97-135. doi:10.1016/j.addr.2016.04.017http://dx.doi.org/10.1016/j.addr.2016.04.017
0
浏览量
78
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构