浏览全部资源
扫码关注微信
四川大学化学工程学院 成都 610065
E-mail: gjun@scu.edu.cn
纸质出版日期:2021-12-20,
网络出版日期:2021-09-07,
收稿日期:2021-04-19,
修回日期:2021-06-17,
扫 描 看 全 文
崔聪聪,刘郭洁,高鹤等.螺吡喃基光响应可逆润湿性聚二甲基硅氧烷薄膜的制备及其性能研究[J].高分子学报,2021,52(12):1568-1577.
Cui Cong-cong,Liu Guo-jie,Gao He,et al.Preparation and Properties of Spiropyran-based Polydimethylsiloxane with Photo-responsive Wettability[J].ACTA POLYMERICA SINICA,2021,52(12):1568-1577.
崔聪聪,刘郭洁,高鹤等.螺吡喃基光响应可逆润湿性聚二甲基硅氧烷薄膜的制备及其性能研究[J].高分子学报,2021,52(12):1568-1577. DOI: 10.11777/j.issn1000-3304.2021.21112.
Cui Cong-cong,Liu Guo-jie,Gao He,et al.Preparation and Properties of Spiropyran-based Polydimethylsiloxane with Photo-responsive Wettability[J].ACTA POLYMERICA SINICA,2021,52(12):1568-1577. DOI: 10.11777/j.issn1000-3304.2021.21112.
通过自由基共聚合的方法将光敏单体螺吡喃(SPMA)接枝在聚二甲基硅氧烷(PDMS)表面,制备了一种光响应可逆切换润湿性薄膜,并对其制备工艺进行了优化. 该薄膜对环境光照敏感,在可见光条件下为无色透明状态,经365 nm紫外光激发15 s后,薄膜表面的SPMA响应光刺激后立即变为深紫色,并伴随着极性的变化,最终导致薄膜表现出润湿性转变. 将薄膜重新放置在可见光或黑暗条件下时,其润湿性能又可逆恢复到初始状态. 对薄膜进行润湿性能测试后发现,紫外光辐照前后的接触角差值最高可达38.5°. 这一显著的可逆切换润湿性能赋予了该光响应薄膜在生物医用材料、细胞培养和无酶化脱附、智能窗涂层等领域的潜在应用价值. 另外,经过多次紫外-可见光交替循环辐照之后该薄膜依然具有良好的光响应性及可逆润湿性能.
In recent years
smart materials have attracted much attention. The active switch of smart materials can be turned on or off reversibly in response to different external stimuli. Inspired by previous studies
we have prepared a photo-responsive smart wetting material with spiropyran as the active switch group. The photosensitive monomer 3-(3'
3'-dimethyl-6-nitrospiro-(chromene-2
2'-indolin)-1'-yl) propyl methacrylate (SPMA) was grafted on the surface of polydimethylsiloxane (PDMS) by free radical copolymerization to prepare a photo-responsive film named SPMA-
g
-PDMS. The film is sensitive to ambient light
and it is colorless and transparent under visible light
while after being excited by 365 nm ultraviolet light for 15 s
it immediately turn purplish
accompanied by the change of polarity
resulting in the wettability transition of the film. When SPMA-
g
-PDMS is exposed to visible light or darkness
the wettability of the film can be restored to its initial state. The difference of contact angle before and after ultraviolet irradiation can reach 38.5°. This remarkable performance of reversible switchable wetting gives SPMA-
g
-PDMS potential application value in the fields of biomedical materials
cell culture
non-enzymatic desorption
smart window coating and so on. In addition
after several alternating UV-visible light cycles
SPMA-
g
-PDMS still possesses good photo response and reversible wetting performances.
光响应螺吡喃可逆润湿性聚二甲基硅氧烷
Light responseSpiropyranReversible wettabilityPolydimethylsiloxane
Kaner P, Hu X, Thomas S W, Asatekin A. ACS Appl Mater Interfaces, 2017, 9(15): 13619. doi:10.1021/acsami.7b01585http://dx.doi.org/10.1021/acsami.7b01585
Zhang X, Xu X, Chen L, Zhang C, Liao L. Dyes Pigments, 2019, 174: 108042. doi:10.1016/j.dyepig.2019.108042http://dx.doi.org/10.1016/j.dyepig.2019.108042
Hao Y, Cui H, Meng J, Wang S. J Photoch Photobio A, 2018, 355: 202-211. doi:10.1016/j.jphotochem.2017.09.029http://dx.doi.org/10.1016/j.jphotochem.2017.09.029
Wang N, Li Y, Zhang Y, Liao Y, Liu W. Langmuir, 2014, 30(39): 11823-11832. doi:10.1021/la502916jhttp://dx.doi.org/10.1021/la502916j
Li G, Wang H, Zhu Z, Fan J B, Wang S. ACS Appl Mater Interfaces, 2019, 11(33): 29681-29688. doi:10.1021/acsami.9b11957http://dx.doi.org/10.1021/acsami.9b11957
Ye Qiquan(叶齐全), Zheng Mingxin(郑明心), Chen Xi(陈曦), Li Dan(李丹), Tian Weiguo(田卫国), Zhang Jun(张军), Yuan Jinying(袁金颖). Acta Polymerica Sinica(高分子学报), 2019, 50(4): 344-351. doi:10.11777/j.issn1000-3304.2018.18256http://dx.doi.org/10.11777/j.issn1000-3304.2018.18256
Paramonov S V, Lokshin V, Fedorova O A. J Photochem Photobiol C: Photochem Rev, 2011, 12(3): 209-236. doi:10.1016/j.jphotochemrev.2011.09.001http://dx.doi.org/10.1016/j.jphotochemrev.2011.09.001
Bohne C, Barra M, Boch R, Abuin E, Scaiano J. J Photochem Photobiol A: Chem, 1992, 65(1-2): 249-265. doi:10.1016/1010-6030(92)85050-5http://dx.doi.org/10.1016/1010-6030(92)85050-5
Zhang X, Jin S, Ming Y, Liang Y, Yu L, Fan M, Luo J, Zuo Z, Yao S. J Photochem Photobiol A: Chem, 1994, 80(1-3): 221-225. doi:10.1016/1010-6030(94)85004-6http://dx.doi.org/10.1016/1010-6030(94)85004-6
Chang Yanhong(常艳红), Kang Hongliang(康宏亮), Li Guanghua(李光华), Han Haiwei(韩海威), Liu Ruigang(刘瑞刚). Acta Polymerica Sinica(高分子学报), 2016, (12): 1669-1677. doi:10.11777/j.issn1000-3304.2016.16089http://dx.doi.org/10.11777/j.issn1000-3304.2016.16089
Balmond E I, Tautges B K, Faulkner A L, Or V W, Hodur B M, Shaw J T, Louie A Y. J Org Chem, 2016, 81(19): 8744-8758. doi:10.1021/acs.joc.6b01193http://dx.doi.org/10.1021/acs.joc.6b01193
Nezhadghaffar-Borhani E, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M. J Colloid Interface Sci, 2021, 593: 67-78. doi:10.1016/j.jcis.2021.03.012http://dx.doi.org/10.1016/j.jcis.2021.03.012
Spijker H J, Dirks A J, Hest J. Polymer, 2005, 46(19): 8528-8535. doi:10.1016/j.polymer.2005.02.127http://dx.doi.org/10.1016/j.polymer.2005.02.127
Dworak C, Ligon S C, Tiefenthaller R, Lagref J J, Liska R. Des Monomers Polym, 2015, 18(3): 262-270. doi:10.1080/15685551.2014.999466http://dx.doi.org/10.1080/15685551.2014.999466
Lukyanov B S, Lukyanova M B. ChemInform, 2006, 37(5): 281-311. doi:10.1002/chin.200605253http://dx.doi.org/10.1002/chin.200605253
Elizalde L E, Ledezma R, López R. Synthetic Commun, 2005, 35(4): 603-610. doi:10.1081/scc-200049808http://dx.doi.org/10.1081/scc-200049808
Liu J, Yao Y, Li X, Zhang Z. Chem Eng J, 2021, 408: 127262. doi:10.1016/j.cej.2020.127262http://dx.doi.org/10.1016/j.cej.2020.127262
Zhou J, Khodakov D A, Ellis A V, Voelcker N H. Electrophoresis, 2012, 33(1): 89-104. doi:10.1002/elps.201100482http://dx.doi.org/10.1002/elps.201100482
Razavi M, Primavera R, Vykunta A, Thakor A S. Mater Sci Eng C-Mater Biol Appl, 2021, 119: 111615. doi:10.1016/j.msec.2020.111615http://dx.doi.org/10.1016/j.msec.2020.111615
Li Y, Ren M, Lv P, Liu Y, Shao H, Wang C, Tang C, Zhou Y, Shuai M. J Mater Chem A, 2019, 7(12): 7242-7255. doi:10.1039/c8ta11111ahttp://dx.doi.org/10.1039/c8ta11111a
Long M, Peng S, Chen J, Yang X, Deng W. Colloid Surf A-Physicochem Eng Asp, 2016, 507: 7-17. doi:10.1016/j.colsurfa.2016.07.085http://dx.doi.org/10.1016/j.colsurfa.2016.07.085
Wenzel, Robert N. Trans Faraday Soc, 1936, 28(8): 988-994. doi:10.1021/ie50320a024http://dx.doi.org/10.1021/ie50320a024
Imato K, Nagata K, Watanabe R, Takeda N. J Mater Chem B, 2020, 8(12): 2393-2399. doi:10.1039/c9tb02958chttp://dx.doi.org/10.1039/c9tb02958c
Wang L, Xiong W, Tang H, Cao D. J Mater Chem C, 2019, 7(29): 9102-9111. doi:10.1039/c9tc02129ahttp://dx.doi.org/10.1039/c9tc02129a
Murase N, Ando T, Ajiro H. J Mater Chem B, 2020, 8(7): 1489-1495. doi:10.1039/c9tb02733ehttp://dx.doi.org/10.1039/c9tb02733e
0
浏览量
76
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构