浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
[ "丁建勋,男,1986 年生. 中国科学院长春应用化学研究所项目研究员. 2007 年获得中国科学技术大学理学学士学位,2012 年获得中国科学院长春应用化学研究所理学博士学位.2017~2019 年赴哈佛医学院开展博士后研究. 入选吉林省拔尖创新人才(2015 年)、吉林省青年人才托举工程项目(2018 年)、中国科学院青年创新促进会会员(2019 年)、国家优秀青年科学基金项目(2020 年). 荣获中国科学院院长优秀奖(2012 年)、中国专利优秀奖(2013 年)、吉林省科技进步一等奖(2018 年)、中国化学会高分子青年学者奖(2019 年)等奖项. 主要研究方向为生物活性聚氨基酸的可控合成及其医学应用." ]
纸质出版日期:2021-08-20,
网络出版日期:2021-08-05,
收稿日期:2021-04-21,
修回日期:2021-06-01,
扫 描 看 全 文
杨佳臻,邹昊洋,丁建勋等.胱氨酸基聚氨基酸纳米材料的可控合成及其生物医学应用[J].高分子学报,2021,52(08):960-977.
Yang Jia-zhen,Zou Hao-yang,Ding Jian-xun,et al.Controlled Synthesis and Biomedical Applications of Cystine-based Polypeptide Nanomaterials[J].ACTA POLYMERICA SINICA,2021,52(08):960-977.
杨佳臻,邹昊洋,丁建勋等.胱氨酸基聚氨基酸纳米材料的可控合成及其生物医学应用[J].高分子学报,2021,52(08):960-977. DOI: 10.11777/j.issn1000-3304.2021.21115.
Yang Jia-zhen,Zou Hao-yang,Ding Jian-xun,et al.Controlled Synthesis and Biomedical Applications of Cystine-based Polypeptide Nanomaterials[J].ACTA POLYMERICA SINICA,2021,52(08):960-977. DOI: 10.11777/j.issn1000-3304.2021.21115.
聚氨基酸是一类以氨基酸及其衍生物为结构单元的高分子. 鉴于其多样性的结构单元、优异的生物安全性、便利的修饰性、敏感的生物响应性和独特的二级结构等优异的性能,聚氨基酸在生物医学领域的应用具有显著的优势. 胱氨酸是半胱氨酸通过二硫键连接的二聚体,可以通过环化反应合成为双官能化的胱氨酸
N
-内羧酸酐(Cys
2
NCA)单体. 通过Cys
2
NCA与单官能化的氨基酸
N
-内羧酸酐单体的开环聚合反应,可以可控合成一系列二硫键交联的具有多样性的化学结构、可调的粒径、优异的稳定性和敏感的生物响应性的聚氨基酸纳米材料,从而实现成像剂、生物活性分子等的可控递送. 本文基于本课题组的研究工作综述了单组分、双组分和多组分胱氨酸基聚氨基酸纳米材料的研究进展,并展望了其在临床应用中的机遇与挑战以及新的生物医学应用领域.
Polypeptides are a kind of polymers with amino acids and their derivatives as structural units. Given their excellent properties
such as various structural units
excellent biosafety
facile modification
sensitive bioresponsiveness
and unique secondary structures
polypeptides have superior advantages for biomedical applications. Cystine is a dimer of cysteine linked by a disulfide bond
which can be synthesized into a bifunctional cysteine
N
-carboxylanhydride (Cys
2
NCA) monomer by cyclization reaction. Through the ring-opening polymerization of Cys
2
NCA and another monofunctional amino acid NCAs
a series of disulfide-crosslinked polypeptide nanomaterials could be controllably synthesized with diverse chemical structures
adjustable particle sizes
excellent stability
and biological responsiveness to achieve the controlled delivery of imaging agents and bioactive molecules. Based on the recent studies of our group
this review summarized the research progress of single-component
double-component
and multi-component cystine-based polypeptide nanomaterials. To be specific
the functions of single-component cystine-based polypeptide nanomaterials are limited. The double-component polypeptide nanomaterials
which are developed on the basis of single-component ones
show improved drug loading rates
expanded types of loading drugs
and a more stable nanostructures. In order to achieve a more exclusive function as a drug delivery platform
we expect to use the synergy and cascade action of different functionalized amino acids to produce multi-component polypeptide nanomaterials. The multi-component nanoplatform might provide reliable solutions for precision medicine. At last
their opportunities and challenges in clinical application and the new medical application fields were predicted.
胱氨酸聚氨基酸纳米材料可控合成功能化生物响应性
CystinePolypeptideNanomaterialControlled synthesisFunctionalizationBioresponsiveness
Ding J, Xiao C, Zhao L, Cheng Y, Ma L, Tang Z, Zhuang X, Chen X. J Polym Sci, Part A: Polym Chem, 2011, 49(12): 2665-2676. doi:10.1002/pola.24698http://dx.doi.org/10.1002/pola.24698
Liu Y, Li D, Ding J, Chen X. Chin Chem Lett, 2020, 31(12): 3001-3014. doi:10.1016/j.cclet.2020.04.029http://dx.doi.org/10.1016/j.cclet.2020.04.029
Huang J, Heise A. Chem Soc Rev, 2013, 42(17): 7373-7390. doi:10.1039/c3cs60063ghttp://dx.doi.org/10.1039/c3cs60063g
Zhang R, Song Z, Yin L, Zheng N, Tang H, Lu H, Gabrielson N P, Lin Y, Kin K, Cheng J. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2015, 7(1): 98-110. doi:10.1002/wnan.1307http://dx.doi.org/10.1002/wnan.1307
Liu L, Li T, Ruan Z, Yan L. J Mater Sci, 2018, 53(13): 9368-9381. doi:10.1007/s10853-018-2276-6http://dx.doi.org/10.1007/s10853-018-2276-6
Jing T, Li T, Ruan Z, Cheng Q, Yan L. Macromol Mater Eng, 2018, 303(9): 1800060. doi:10.1002/mame.201800060http://dx.doi.org/10.1002/mame.201800060
Xing T, Yang X, Wang F, Lai B, Yan L. J Mater Chem, 2012, 22(41): 22290-22300. doi:10.1039/c2jm35627ahttp://dx.doi.org/10.1039/c2jm35627a
Chen J, Ding J, Wang Y, Cheng J, Ji S, Zhuang X, Chen X. Adv Mater, 2017, 29(32): 1701170. doi:10.1002/adma.201701170http://dx.doi.org/10.1002/adma.201701170
Ding J, Zhuang X, Xiao C, Cheng Y, Zhao L, He C, Tang Z, Chen X. J Mater Chem, 2011, 21(30): 11383-11391. doi:10.1039/c1jm10391ahttp://dx.doi.org/10.1039/c1jm10391a
Ding J, Zhao L, Li D, Xiao C, Zhuang X, Chen X. Polym Chem, 2013, 4(11): 3345-3356. doi:10.1039/c3py00144jhttp://dx.doi.org/10.1039/c3py00144j
Jiang Zhongyu(姜中雨), Feng Xiangru(冯祥汝), Xu Weiguo(许维国), Zhuang Xiuli(庄秀丽), Ding Jianxun(丁建勋), Chen Xuesi(陈学思). Acta Polymerica Sinica(高分子学报), 2020, 51(8): 901-910. doi:10.11777/j.issn1000-3304.2020.20053http://dx.doi.org/10.11777/j.issn1000-3304.2020.20053
Gabrielson N P, Lu H, Yin L, Li D, Wang F, Cheng J. Angew Chem Int Ed, 2012, 51(5): 1143-1147. doi:10.1002/anie.201104262http://dx.doi.org/10.1002/anie.201104262
Ding J, Xiao C, He C, Li M, Li D, Zhuang X, Chen X. Nanotechnology, 2011, 22(49): 494012. doi:10.1088/0957-4484/22/49/494012http://dx.doi.org/10.1088/0957-4484/22/49/494012
Ding J, Xiao C, Zhuang X, He C, Chen X. Mater Lett, 2012, 73: 17-20. doi:10.1016/j.matlet.2011.12.092http://dx.doi.org/10.1016/j.matlet.2011.12.092
Lu D, Wang H, Wang X, Li Y, Guo H, Sun S, Zhao X, Yang Z, Lei Z. Carbohydr Polym, 2019, 215: 20-28. doi:10.1016/j.carbpol.2019.03.065http://dx.doi.org/10.1016/j.carbpol.2019.03.065
Liu H, Cheng Y, Chen J, Chang F, Wang J, Ding J, Chen X. Acta Biomater, 2018, 73: 103-111. doi:10.1016/j.actbio.2018.04.035http://dx.doi.org/10.1016/j.actbio.2018.04.035
Yan S, Zhang X, Zhang K, Di H, Feng L, Li G, Fang J, Cui L, Yin J. J Mater Chem B, 2016, 4(5): 947-961. doi:10.1039/c5tb01488chttp://dx.doi.org/10.1039/c5tb01488c
Wong E H H, Khin M M, Ravikumar V, Si Z, Rice S A, Chan-Park M B. Biomacromolecules, 2016, 17(3): 1170-1178. doi:10.1021/acs.biomac.5b01766http://dx.doi.org/10.1021/acs.biomac.5b01766
Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X. Adv Sci, 2018, 5(5): 1700527. doi:10.1002/advs.201700527http://dx.doi.org/10.1002/advs.201700527
Deng C, Wu J, Cheng R, Meng F, Klok H A, Zhong Z. Prog Polym Sci, 2014, 39(2): 330-364. doi:10.1016/j.progpolymsci.2013.10.008http://dx.doi.org/10.1016/j.progpolymsci.2013.10.008
Leuchs H. Ber Dtsch Chem Ges, 1906, 39(1): 857-861. doi:10.1002/cber.190603901133http://dx.doi.org/10.1002/cber.190603901133
Daly W H, Poché D. Tetrahedron Lett, 1988, 29(46): 5859-5862. doi:10.1016/s0040-4039(00)82209-1http://dx.doi.org/10.1016/s0040-4039(00)82209-1
Curtius T, Sieber W. Ber Dtsch Chem Ges A/B, 1921, 54(7): 1430-1437. doi:10.1002/cber.19210540707http://dx.doi.org/10.1002/cber.19210540707
Wessely F, Riedl K, Tuppy H. Monatsh Chem, 1950, 81(6): 861-872. doi:10.1007/bf00899328http://dx.doi.org/10.1007/bf00899328
Cheng J, Deming T J. Top Curr Chem, 2012, 310: 1-26
Jiang Zhongyu(姜中雨), Liu Yixuan(刘仪轩), Feng Xiangru(冯祥汝), Ding Jianxun(丁建勋). J Funct Polym(功能高分子学报), 2019, 32(1): 13-27
Betz S F. Protein Sci, 1993, 2(10): 1551-1558. doi:10.1002/pro.5560021002http://dx.doi.org/10.1002/pro.5560021002
Sun J, Chen X, Lu T, Liu S, Tian H, Guo Z, Jing X. Langmuir, 2008, 24(18): 10099-10106. doi:10.1021/la8013877http://dx.doi.org/10.1021/la8013877
Wang K, Luo G F, Liu Y, Li C, Cheng S X, Zhuo R X, Zhang X Z. Polym Chem, 2012, 3(4): 1084-1090. doi:10.1039/c2py00600fhttp://dx.doi.org/10.1039/c2py00600f
Yu S, He C, Lv Q, Sun H, Chen X. RSC Adv, 2014, 4(108): 63070-63078. doi:10.1039/c4ra14221ghttp://dx.doi.org/10.1039/c4ra14221g
Ding J, Shi F, Xiao C, Lin L, Chen L, He C, Zhuang X, Chen X. Polym Chem, 2011, 2(12): 2857-2864. doi:10.1039/c1py00360ghttp://dx.doi.org/10.1039/c1py00360g
Feng X, Xu W, Xu X, Li G, Ding J, Chen X. Sci China Chem, 2021, 64(2): 293-301. doi:10.1007/s11426-020-9884-6http://dx.doi.org/10.1007/s11426-020-9884-6
Erlanger B F, Brand E. J Am Chem Soc, 1951, 73(7): 3508-3510. doi:10.1021/ja01151a512http://dx.doi.org/10.1021/ja01151a512
Ben-Ishai D, Katchalski E. J Am Chem Soc, 1952, 74(14): 3688-3689. doi:10.1021/ja01134a501http://dx.doi.org/10.1021/ja01134a501
Xing T, Lai B, Ye X, Yan L. Macromol Biosci, 2011, 11(7): 962-969. doi:10.1002/mabi.201000510http://dx.doi.org/10.1002/mabi.201000510
Sulistio A, Widjaya A, Blencowe A, Zhang X, Qiao G. Chem Commun, 2011, 47(4): 1151-1153. doi:10.1039/c0cc03541fhttp://dx.doi.org/10.1039/c0cc03541f
Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G. Chem Rev, 2009, 109(11): 5528-5578. doi:10.1021/cr900049thttp://dx.doi.org/10.1021/cr900049t
Xing T, Lai B, Yan L. Macromol Chem Phys, 2013, 214(5): 578-588. doi:10.1002/macp.201200568http://dx.doi.org/10.1002/macp.201200568
Liu L, Li T, Ruan Z, Yuan P, Yan L. Mater Sci Eng C Mater Biol Appl, 2018, 92: 745-756. doi:10.1016/j.msec.2018.07.034http://dx.doi.org/10.1016/j.msec.2018.07.034
Vayaboury W, Giani O, Cottet H, Deratani A, Schue F. Macromol Rapid Commun, 2004, 25(13): 1221-1224. doi:10.1002/marc.200400111http://dx.doi.org/10.1002/marc.200400111
Aliferis T, Iatrou H, Hadjichristidis N. Biomacromolecules, 2004, 5(5): 1653-1656. doi:10.1021/bm0497217http://dx.doi.org/10.1021/bm0497217
Shi S, Yao C, Cen J, Li L, Liu G, Hu J, Liu S. Angew Chem Int Ed, 2020, 59(41): 18172-18178. doi:10.1002/anie.202006687http://dx.doi.org/10.1002/anie.202006687
Xu W, Ding J, Chen X. Biomacromolecules, 2017, 18(10): 3291-3301. doi:10.1021/acs.biomac.7b00950http://dx.doi.org/10.1021/acs.biomac.7b00950
He C, Hu Y, Yin L, Tang C, Yin C. Biomaterials, 2010, 31(13): 3657-3666. doi:10.1016/j.biomaterials.2010.01.065http://dx.doi.org/10.1016/j.biomaterials.2010.01.065
Weaver Jr D J, Voss Jr E W. Biol Cell, 1998, 90(2): 169-181. doi:10.1016/s0248-4900(98)80338-9http://dx.doi.org/10.1016/s0248-4900(98)80338-9
Clift M J D, Rothen-Rutishauser B, Brown D M, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V. Toxicol Appl Pharmacol, 2008, 232(3): 418-427. doi:10.1016/j.taap.2008.06.009http://dx.doi.org/10.1016/j.taap.2008.06.009
Huang K, Shi B, Xu W, Ding J, Yang Y, Liu H, Zhuang X, Chen X. Acta Biomater, 2015, 27: 179-193. doi:10.1016/j.actbio.2015.08.049http://dx.doi.org/10.1016/j.actbio.2015.08.049
He L, Li D, Wang Z, Xu W, Wang J, Guo H, Wang C, Ding J. Polymers, 2016, 8(2): 8020036. doi:10.3390/polym8020036http://dx.doi.org/10.3390/polym8020036
Fearon U, Canavan M, Biniecka M, Veale D J. Nat Rev Rheumatol, 2016, 12(7): 385-397. doi:10.1038/nrrheum.2016.69http://dx.doi.org/10.1038/nrrheum.2016.69
Mateen S, Moin S, Zafar A, Khan A Q. Clin Chim Acta, 2016, 463: 4-10. doi:10.1016/j.cca.2016.10.007http://dx.doi.org/10.1016/j.cca.2016.10.007
Feng N, Yang M, Feng X, Wang Y, Chang F, Ding J. ACS Biomater Sci Eng, 2018, 4(12): 4154-4162. doi:10.1021/acsbiomaterials.8b00738http://dx.doi.org/10.1021/acsbiomaterials.8b00738
Guo H, Li F, Qiu H, Xu W, Li P, Hou Y, Ding J, Chen X. Research, 2020, 2020: 8970135. doi:10.34133/2020/8970135http://dx.doi.org/10.34133/2020/8970135
Guo H, Hou Y, Ding J. Curr Pharm Des, 2019, 25(4): 371-373. doi:10.2174/138161282504190516080607http://dx.doi.org/10.2174/138161282504190516080607
Shi F, Ding J, Xiao C, Zhuang X, He C, Chen L, Chen X. J Mater Chem, 2012, 22(28): 14168-14179. doi:10.1039/c2jm32033ahttp://dx.doi.org/10.1039/c2jm32033a
Shi B, Huang K, Ding J, Xu W, Yang Y, Liu H, Yan L, Chen X. Theranostics, 2017, 7(3): 703-716. doi:10.7150/thno.16794http://dx.doi.org/10.7150/thno.16794
Ding J, Shi F, Li D, Chen L, Zhuang X, Chen X. Biomater Sci, 2013, 1(6): 633-646. doi:10.1039/c3bm60024fhttp://dx.doi.org/10.1039/c3bm60024f
Jing T, Fu L, Liu L, Yan L. Polym Chem, 2016, 7(4): 951-957. doi:10.1039/c5py01629khttp://dx.doi.org/10.1039/c5py01629k
Sulistio A, Blencowe A, Widjaya A, Zhang X, Qiao G. Polym Chem, 2012, 3(1): 224-234. doi:10.1039/c1py00436khttp://dx.doi.org/10.1039/c1py00436k
Lu H, Cheng J. J Am Chem Soc, 2007, 129(46): 14114-14115. doi:10.1021/ja074961qhttp://dx.doi.org/10.1021/ja074961q
Guo H, Xu W, Chen J, Yan L, Ding J, Hou Y, Chen X. J Control Release, 2017, 259: 136-148. doi:10.1016/j.jconrel.2016.12.041http://dx.doi.org/10.1016/j.jconrel.2016.12.041
Guo H, Xu W, Wang J, He L, Hou Y, Ding J. J Control Release, 2017, 259: E48-E49. doi:10.1016/j.jconrel.2016.12.041http://dx.doi.org/10.1016/j.jconrel.2016.12.041
Guo H, Li F, Xu W, Chen J, Hou Y, Wang C, Ding J, Chen X. Adv Sci, 2018, 5(6): 1800004. doi:10.1002/advs.201800004http://dx.doi.org/10.1002/advs.201800004
Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan V P, Jiang W, Popovic Z, Jain R.K, Bawendi M.G, Fukumura D. Proc Natl Acad Sci USA, 2011, 108(6): 2426-2431. doi:10.1073/pnas.1018382108http://dx.doi.org/10.1073/pnas.1018382108
Tong R, Chiang H H, Kohane D S. Proc Natl Acad Sci USA, 2013, 110(47): 19048-19053. doi:10.1073/pnas.1315336110http://dx.doi.org/10.1073/pnas.1315336110
Chen J, Jiang Z, Xu W, Sun T, Zhuang X, Ding J, Chen X. Nano Lett, 2020, 20(8): 6191-6198. doi:10.1021/acs.nanolett.0c02515http://dx.doi.org/10.1021/acs.nanolett.0c02515
Chen J, Ding J, Xu W, Sun T, Xiao H, Zhuang X, Chen X. Nano Lett, 2017, 17(7): 4526-4533. doi:10.1021/acs.nanolett.7b02129http://dx.doi.org/10.1021/acs.nanolett.7b02129
Otsuka H, Uchimura E, Koshino H, Okano T, Kataoka K. J Am Chem Soc, 2003, 125(12): 3493-3502. doi:10.1021/ja021303rhttp://dx.doi.org/10.1021/ja021303r
Guo X, Wei X, Jing Y, Zhou S. Adv Mater, 2015, 27(41): 6450-6456. doi:10.1002/adma.201502865http://dx.doi.org/10.1002/adma.201502865
Sun Y-Q, Liu J, Zhang J, Yang T, Guo W. Chem Commun, 2013, 49(26): 2637-2639. doi:10.1039/c3cc39161bhttp://dx.doi.org/10.1039/c3cc39161b
Feng X, Xu W, Liu J, Li D, Li G, Ding J, Chen X. Sci Bull, 2021, 66(4): 362-373. doi:10.1016/j.scib.2020.07.013http://dx.doi.org/10.1016/j.scib.2020.07.013
0
浏览量
146
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构