浏览全部资源
扫码关注微信
1.天津大学材料科学与工程学院 天津 300350
2.中沙(天津)石化有限公司生产部 天津 300271
E-mail: lilypan@tju.edu.cn
纸质出版日期:2021-11-20,
网络出版日期:2021-08-18,
收稿日期:2021-04-29,
修回日期:2021-05-11,
扫 描 看 全 文
高欢,邵平均,李邦等.配位链转移聚合合成高密度聚乙烯-嵌段-等规聚丙烯嵌段共聚物[J].高分子学报,2021,52(11):1498-1505.
Gao Huan,Shao Ping-jun,Li Bang,et al.Synthesis of High-density Polyethylene-block-Isotactic Polypropylene Diblock Copolymer through Coordination Chain Transfer Polymerization[J].ACTA POLYMERICA SINICA,2021,52(11):1498-1505.
高欢,邵平均,李邦等.配位链转移聚合合成高密度聚乙烯-嵌段-等规聚丙烯嵌段共聚物[J].高分子学报,2021,52(11):1498-1505. DOI: 10.11777/j.issn1000-3304.2021.21125.
Gao Huan,Shao Ping-jun,Li Bang,et al.Synthesis of High-density Polyethylene-block-Isotactic Polypropylene Diblock Copolymer through Coordination Chain Transfer Polymerization[J].ACTA POLYMERICA SINICA,2021,52(11):1498-1505. DOI: 10.11777/j.issn1000-3304.2021.21125.
通过利用配位链转移聚合方法,设计“一锅两步法”合成路线合成了高密度聚乙烯-嵌段-等规聚丙烯两嵌段共聚物. 双水杨醛亚胺锆催化剂/甲基铝氧烷催化体系,在二乙基锌作链转移剂的情况下,催化乙烯进行配位链转移聚合,生成双(聚乙烯基)锌并作为大分子链转移剂参与第二步由二甲基吡啶胺铪催化剂催化的丙烯等规聚合反应,最终得到高密度聚乙烯-全同聚丙烯(HDPE-
b
-
i
PP)嵌段共聚物. 嵌段聚合物的分子量及分布、热性能、微结构等利用高温凝胶色谱(HT-GPC)、示差扫描量热法(DSC)、高温核磁(NMR)进行了明确表征. 该类嵌段聚合物可用于增容商业料HDPE/
i
PP的共混物. 扫描电镜(SEM)表征结果显示,通过加入10 wt%嵌段聚合物,共混物(70/30)中分散相粒子尺寸显著减小,两相界面粘结明显改善.
In this contribution
a “one-pot
two-step” approach was adopted to synthesize high-density polyethylene-block-isotactic polypropylene diblock copolymers
via
the coordination chain transfer polymerization. Dibenzylbis(salicylaldimine) zirconium/methylaluminoxane catalyst system could promote the coordination chain transfer polymerization of ethylene to yield bis(polyvinyl)zinc in the presence of diethyl zinc as the chain transfer agent. The bis(polyvinyl)zinc served as a chain transfer agent in the subsequent propylene polymerization
which was promoted by dimethyl[(amido)(naphthyl)pyridine] hafnium catalyst and gave a series of polyethylene-block-polypropylene copolymers. Molecular weight and molecular weight distribution
thermal properties and microstructure of the newly obtained block copolymers were clearly characterized by high temperature gel chromatography (GPC)
differential scanning calorimetry (DSC)
high temperature nuclear magnetic (NMR)
etc
. Finally
the diblock copolymers (10 wt%) was also blended with commercially available PE and
i
PP (70/30) to improve their compatibility. As SEM analysis revealed
dispersed phase particle size was significantly reduced upon the addition of the block polymer
and the interfacial bonding of the two phases could be obviously improved. This research not only provides new polymerization method for the synthesis of block copolymer
but also affords good PE/PP compatibilizers. The newly resultant PE-
b
-
i
PP block copolymers are expected to play a promising role in the recycling of the waste PE and PP plastic and the sustainable development.
配位链转移聚合双(聚乙烯基)锌嵌段共聚物增容剂
Coordination chain transfer polymerizationBis(polyvinyl)zincBlock copolymerCompatibilizer
Jeannette M, Megan L. Science, 2017, 358(6365): 870-872. doi:10.1126/science.aaq0324http://dx.doi.org/10.1126/science.aaq0324
Chen Haiming(陈海明), Dong Xia(董侠), Wang Dujin(王笃金). Acta Polymerica Sinica(高分子学报), 2020, (12):. doi:10.11777/j.issn1000-3304.2020.20136http://dx.doi.org/10.11777/j.issn1000-3304.2020.20136
1295-1306. doi:10.11777/j.issn1000-3304.2020.20136http://dx.doi.org/10.11777/j.issn1000-3304.2020.20136
Tang Yong(唐勇). Acta Polymerica Sinica(高分子学报), 2017, (1): 1-2
Eagan J, Bates F, Coates G. Science, 2017, 355(6327): 814-816. doi:10.1126/science.aah5744http://dx.doi.org/10.1126/science.aah5744
Xu J, Coates G, Bates F. Macromolecules, 2018, 51(21): 8585-8596. doi:10.1021/acs.macromol.8b01907http://dx.doi.org/10.1021/acs.macromol.8b01907
Yang F, Pan L, Du H, Ma Z, Li Y. Chinese J Polym Sci, 2020, 38: 1248-1257. doi:10.1007/s10118-020-2433-7http://dx.doi.org/10.1007/s10118-020-2433-7
Pan L, Hong M, Li Y. Macromolecules, 2009, 42(13): 4391-4393. doi:10.1021/ma9008548http://dx.doi.org/10.1021/ma9008548
Pan L, Zhang K, Hou Z. Macromolecules, 2010, 43(23): 9591-9593. doi:10.1021/ma102329phttp://dx.doi.org/10.1021/ma102329p
Domski G, Coates G, Brookhart M. Prog Polym Sci, 2007, 32(1): 30-92. doi:10.1016/j.progpolymsci.2006.11.001http://dx.doi.org/10.1016/j.progpolymsci.2006.11.001
Valente A, Mortreux A, Zinck P. Chem Rev, 2013, 113(5): 3836-3857. doi:10.1021/cr300289zhttp://dx.doi.org/10.1021/cr300289z
Liu B, Cui D. Macromolecules, 2016, 49(17): 6226-6231. doi:10.1021/acs.macromol.6b00904http://dx.doi.org/10.1021/acs.macromol.6b00904
Chenal T, Visseaux M. Macromolecules, 2012, 45(14): 5718-5727. doi:10.1021/ma3005185http://dx.doi.org/10.1021/ma3005185
Daniel J, Phillip D, Timothy T. Science, 2006, 312(5774): 714-719. doi:10.1016/j.epsl.2006.03.036http://dx.doi.org/10.1016/j.epsl.2006.03.036
Matyjaszewski K. Polymer Science: A Comprehensive Reference. Amsterdam: Elsevier Press, 2012. 699-737. doi:10.1016/b978-0-444-53349-4.09005-1http://dx.doi.org/10.1016/b978-0-444-53349-4.09005-1
Heon E, Richard A. Macromolecules, 2010, 43(16): 6789-6799. doi:10.1021/ma1012122http://dx.doi.org/10.1021/ma1012122
Park S, Kim C, Lee B. Macromolecules, 2017, 50(17): 6606-6616. doi:10.1021/acs.macromol.7b01365http://dx.doi.org/10.1021/acs.macromol.7b01365
Finizia A, Claudio D, Anna M. Macromolecules, 2018, 51(23): 9613-9625. doi:10.1021/acs.macromol.8b01947http://dx.doi.org/10.1021/acs.macromol.8b01947
Makio H, Ochiai T, Fujita T. J Am Chem Soc, 2013, 135(22): 8177-8180. doi:10.1021/ja403626ghttp://dx.doi.org/10.1021/ja403626g
Nzahou O, Norsic S, D’Agosto F. Macromolecules, 2017, 50(21): 8372-8377. doi:10.1021/acs.macromol.7b01396http://dx.doi.org/10.1021/acs.macromol.7b01396
Rouholahnejad F, Chen P. Organometallics, 2010, 29(2): 294-302. doi:10.1021/om900238khttp://dx.doi.org/10.1021/om900238k
Phillip D, Daniel J. Macromolecules, 2008, 41(12): 4081-4089. doi:10.1021/ma800357nhttp://dx.doi.org/10.1021/ma800357n
Shang R, Pan L, Li Y. Macromolecules, 2019, 52(23): 9280-9290. doi:10.1021/acs.macromol.9b00757http://dx.doi.org/10.1021/acs.macromol.9b00757
Shang Ruining(商睿凝), Pan Li(潘莉), Li Yuesheng(李悦生). Acta Polymerica Sinica(高分子学报), 2019, (11):. doi:10.11777/j.issn1000-3304.2019.19081http://dx.doi.org/10.11777/j.issn1000-3304.2019.19081
1187-1195. doi:10.11777/j.issn1000-3304.2019.19081http://dx.doi.org/10.11777/j.issn1000-3304.2019.19081
Du Huizhen(杜惠真), Pan Li(潘莉), Li Yuesheng(李悦生). Acta Polymerica Sinica(高分子学报), 2018, (12):. doi:10.11777/j.issn1000-3304.2018.18090http://dx.doi.org/10.11777/j.issn1000-3304.2018.18090
1539-1547. doi:10.11777/j.issn1000-3304.2018.18090http://dx.doi.org/10.11777/j.issn1000-3304.2018.18090
Phillip D. Macromolecules, 2007, 40(20): 7061-7064. doi:10.1021/ma0717791http://dx.doi.org/10.1021/ma0717791
Boussie T, Stevens J, Busico V. Angew Chem Int Ed, 2006, 45(20): 3278-3283. doi:10.1002/anie.200600240http://dx.doi.org/10.1002/anie.200600240
Yin X, Gao H, Yang F, Pan L, Wang B, Ma Z, Li Y. Chinese J Polym Sci, 2020, 38: 1192-1201. doi:10.1007/s10118-020-2446-2http://dx.doi.org/10.1007/s10118-020-2446-2
Vincenzo B, Roberta C. Macromolecules, 2004, 37(22): 8201-8203. doi:10.1021/ma048144bhttp://dx.doi.org/10.1021/ma048144b
0
浏览量
69
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构