浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
E-mail: dongpo.song@tiu.edu.cn
纸质出版日期:2021-12-20,
网络出版日期:2021-09-08,
收稿日期:2021-05-18,
修回日期:2021-06-26,
扫 描 看 全 文
李玉莲,宋东坡,李悦生.三嵌段共聚物刷诱导乳液自组装制备响应性多孔结构色微球[J].高分子学报,2021,52(12):1591-1602.
Li Yu-lian,Song Dong-po,Li Yue-sheng.Preparation of Stimuli-responsive Structural Colored Porous Microspheres via Emulsion Self-assembly Induced by Bottlebrush Triblock Copolymers[J].ACTA POLYMERICA SINICA,2021,52(12):1591-1602.
李玉莲,宋东坡,李悦生.三嵌段共聚物刷诱导乳液自组装制备响应性多孔结构色微球[J].高分子学报,2021,52(12):1591-1602. DOI: 10.11777/j.issn1000-3304.2021.21146.
Li Yu-lian,Song Dong-po,Li Yue-sheng.Preparation of Stimuli-responsive Structural Colored Porous Microspheres via Emulsion Self-assembly Induced by Bottlebrush Triblock Copolymers[J].ACTA POLYMERICA SINICA,2021,52(12):1591-1602. DOI: 10.11777/j.issn1000-3304.2021.21146.
我们近期报道了两亲性嵌段共聚物刷(聚降冰片烯-
g
-聚苯乙烯)-
b
-(聚降冰片烯-
g
-聚环氧乙烷)(PS-
b
-PEO)诱导的“有序自发乳化机制”,简便地制备了多孔结构色微球. 在此基础上,本工作中设计合成了含聚丙烯酸叔丁酯(PtBA)中间嵌段的三嵌段共聚物刷,探究其对界面自组装行为的影响规律. 实验结果表明,PtBA嵌段会使水-油界面过渡层厚度增加,而显著影响聚合物刷在W/O界面上的排列方式. 此外,PtBA可在酸性条件下水解生成聚丙烯酸(PAA),与有机碱作用后成盐,使孔内壁亲水性增加、微球体积膨胀、结构色红移,从而制备出刺激响应性结构色微球.
Our recent work showed that amphiphilic bottlebrush block copolymer (polynorbornene-graft-polystyrene)-block-(polynorbornene-graft-poly(ethylene oxide)) (PS-
b
-PEO) could induce organized spontaneous emulsification
yielding structural colored porous microspheres templated by ordered water-in-oil-in-water (W/O/W) double emulsion droplets. Herein
we demonstrate the design and synthesis of a series of triblock copolymers with a poly(tert-butylacrylate) (PtBA) block between PS and PEO blocks
and disclose the influence of the middle block on interfacial self-assembly. It turned out that the transition layer at W/O interface becomes thicker in the presence of PtBA block
leading to great influence on packing parameters of the bottlebrush amphiphiles. Even though decreased ordering of nanopore arrays is observed relative to that of diblock copolymers
the middle block enables the wide tuning of reflection across the whole visible spectrum (471-717 nm) simply through variation of droplet evaporation time. Moreover
stimuli-responsive structural colored microspheres are obtained
via
hydrolysis of PtBA to poly(acrylic acid) (PAA) which can react with organic bases and form organic salts
leading to enhanced hydrophilicity of the microspheres
swelling of the photonic structure
and red-shift of structural color. A large increase of reflection maximum of up to 50 nm is achieved in the presence of arginine at a low concentration of 10
-3
mol/L. Such a color change can be completed within 4 min
providing an effective method for fast and sensitive detection. This work not only provides useful fundamental knowledge regarding the interfacial self-assembly of triblock copolymers
but also demonstrates an effective strategy for making stimuli-responsive photonic structures.
嵌段共聚物界面组装结构色刺激响应性
Block copolymerInterfacial self-assemblyStructural colorStimuli-responsive behaviors
Ge J, Yin Y. Angew Chem Int Ed, 2011, 50: 1492-1522. doi:10.1002/anie.200907091http://dx.doi.org/10.1002/anie.200907091
Wang Libin(王利彬), Wang Jingxia(王京霞), Song Yanlin(宋延林). Acta Polymerica Sinica(高分子学报), 2012, (10): 1118-1127. doi:10.3724/sp.j.1105.2012.12133http://dx.doi.org/10.3724/sp.j.1105.2012.12133
Yu Z, Wang C F, Ling L, Chen L, Chen S. Angew Chem Int Ed, 2012, 51: 2375-2378. doi:10.1002/anie.201107126http://dx.doi.org/10.1002/anie.201107126
Liu Chenhui(刘晨辉), Liu Genqi(刘根起), Ren Chenrui(任宸锐), Shi Hongkai(史红凯), Xue Ke(薛珂), Cao Yunlei(曹云雷), Li Huanhuan(李欢欢), Liu Jianxun(刘建勋). Acta Polymerica Sinica(高分子学报), 2020, (7): 762-770. doi:10.11777/j.issn1000-3304.2020.20030http://dx.doi.org/10.11777/j.issn1000-3304.2020.20030
Wang J X, Wang L B, Song Y L, Jiang L. J Mater Chem C, 2013, 1: 6048-6058. doi:10.1039/c3tc30728jhttp://dx.doi.org/10.1039/c3tc30728j
Heo Y, Kang H, Lee J S, Oh Y K, Kim S H. Small, 2016, 12: 3819-3826. doi:10.1002/smll.201601140http://dx.doi.org/10.1002/smll.201601140
Nam H, Song K, Ha D, Kim T. Sci Rep, 2016, 6: 30885-30893. doi:10.1038/srep30885http://dx.doi.org/10.1038/srep30885
Qin L, Liu X, He K, Yu G, Yuan H, Xu M, Li F, Yu Y. Nat Commun, 2021, 12: 699-707. doi:10.1038/s41467-021-20908-yhttp://dx.doi.org/10.1038/s41467-021-20908-y
Zhang J, Yang S, Tian Y, Wang C F, Chen S. Chem Commun, 2015, 51: 10528-10531. doi:10.1039/c5cc03363bhttp://dx.doi.org/10.1039/c5cc03363b
Liu Q J, Li Y L, Xu J C, Lu H F, Li Y S, Song D P. ACS Nano, 2021, 15: 5534-5544. doi:10.1021/acsnano.1c00361http://dx.doi.org/10.1021/acsnano.1c00361
Qin J, Li X, Cao L, Du S, Wang W, Yao S Q. J Am Chem Soc, 2019, 142: 417-423. doi:10.1021/jacs.9b11116http://dx.doi.org/10.1021/jacs.9b11116
Liu Shirong(刘士荣), Qin Liyan(秦立彦), Zhang Xiaodong(张晓栋), Chen Mingqing(陈明清). Chem J Chinese University(高等学校化学学报), 2017, (11): 1993-1998. doi:10.7503/cjcu20170519http://dx.doi.org/10.7503/cjcu20170519
Xia Y, Na X, Wu J, Ma G. Adv Mater, 2019, 31: 1801159-1801176. doi:10.1002/adma.201801159http://dx.doi.org/10.1002/adma.201801159
Fan J B, Huang C, Jiang L, Wang S. J Mater Chem B, 2013, 1: 2222-2235. doi:10.1039/c3tb00021dhttp://dx.doi.org/10.1039/c3tb00021d
Gokmen M T, Du P F E. Prog Polym Sci, 2012, 37: 365-405. doi:10.1016/j.progpolymsci.2011.07.006http://dx.doi.org/10.1016/j.progpolymsci.2011.07.006
Zhou M, Bao J, Xu Y, Zhang J J, Xie J F, Guan M L, Wang C L, Wen L Y, Lei Y, Xie Y. ACS Nano, 2014, 8: 7088-7098. doi:10.1021/nn501996ahttp://dx.doi.org/10.1021/nn501996a
Tang Y, Zhang Y, Li W, Ma B, Chen X. Chem Soc Rev, 2015, 44: 5926-5940. doi:10.1039/c4cs00442fhttp://dx.doi.org/10.1039/c4cs00442f
Burgess I B, Koay N, Raymond K P, Kolle M, Loncar M, Aizenberg J. ACS Nano, 2012, 6: 1427-1437. doi:10.1021/nn204220chttp://dx.doi.org/10.1021/nn204220c
Bai L, Xie Z Y, Wang W, Yuan C W, Zhao Y J, Mu Z D, Zhong Q F, Gu Z Z. ACS Nano, 2014, 8: 11094-11100. doi:10.1021/nn504659phttp://dx.doi.org/10.1021/nn504659p
Zhang Y Q, Qiu J H, Gao M M, Li P, Gao L J, Heng L P, Tang B Z, Jiang L. J Mater Chem C, 2014, 2: 8865-8872. doi:10.1039/c4tc00147hhttp://dx.doi.org/10.1039/c4tc00147h
Vasquez Y, Kolle M, Mishchenko L, Hatton B D, Aizenberg J. ACS Photonics, 2013, 1: 53-60. doi:10.1021/ph400067zhttp://dx.doi.org/10.1021/ph400067z
Zhang B, Cheng Y, Wang H, Ye B F, Shang L R, Zhao Y J, Gu Z Z. Nanoscale, 2015, 7: 10590-10594. doi:10.1039/c5nr02324fhttp://dx.doi.org/10.1039/c5nr02324f
Cui J C, Zhu W, Gao N, Li J, Yang H W, Jiang Y, Seidel P, Ravoo B J, Li G T. Angew Chem Int Ed, 2014, 53: 3844-3848. doi:10.1002/anie.201308959http://dx.doi.org/10.1002/anie.201308959
Wang Qiuhong(王秋鸿), Xue Min(薛敏), Wang Fengyan(王丰彦), Yan Zequn(阎泽群), Xue Fei(薛飞), Chen Wei(陈伟), Qi Fenglian(齐丰莲), Meng Zihui(孟子晖), Xu Zhibin(徐志斌), Chem J Chinese University(高等学校化学学报), 2014, (11): 2297-2302. doi:10.3969/j.issn.1006-6713.2020.07.020http://dx.doi.org/10.3969/j.issn.1006-6713.2020.07.020
Chen X, Yang X, Song D P, Men Y F, Li Y S. Macromolecules, 2021, 54: 3668-3677. doi:10.1021/acs.macromol.1c00198http://dx.doi.org/10.1021/acs.macromol.1c00198
Zhu J, Hayward R C. Angew Chem Int Ed, 2008, 47: 2113-2116. doi:10.1002/anie.200704863http://dx.doi.org/10.1002/anie.200704863
Hong M, Liu J Y, Li B X, Li Y S. Macromolecules, 2011, 44: 5659-5665. doi:10.1021/ma2010537http://dx.doi.org/10.1021/ma2010537
Nguyen H V, Gallagher N M, Vohidov F, Jiang Y, Kawamoto K, Zhang H, Park J V, Huang Z, Ottaviani M F, Rajca A, Johnson J A. ACS Macro Lett, 2018, 7: 472-476. doi:10.1021/acsmacrolett.8b00201http://dx.doi.org/10.1021/acsmacrolett.8b00201
Gao H F, Matyjaszewski K. J Am Chem Soc, 2007, 129: 6633-6639. doi:10.1021/ja0711617http://dx.doi.org/10.1021/ja0711617
Song D P, Li C, Colella N S, Xie W, Li S, Lu X, Gido S, Lee J H, Watkins J J. J Am Chem Soc, 2015, 137: 12510-12513. doi:10.1021/jacs.5b08632http://dx.doi.org/10.1021/jacs.5b08632
Song D P, Li C, Li W H, Watkins J J. ACS Nano, 2016, 10: 1216-1223. doi:10.1021/acsnano.5b06525http://dx.doi.org/10.1021/acsnano.5b06525
Lutz J F, Matyjaszewski K. Chem Phys, 2002, 203: 1385-1395. doi:10.1002/1521-3935(200207)203:10/11<1385::aid-macp1385>3.0.co;2-xhttp://dx.doi.org/10.1002/1521-3935(200207)203:10/11<1385::aid-macp1385>3.0.co;2-x
Lutz J F, Matyjaszewski K. J Polym Sci, Part A: Polym Chem, 2005, 43: 897-910. doi:10.1002/pola.20548http://dx.doi.org/10.1002/pola.20548
Li Y L, Chen X, Geng H K, Dong Y, Wang B, Ma Z, Pan L, Ma G Q, Song D P, Li Y S. Angew Chem Int Ed, 2021, 60: 3647-3653. doi:10.1002/anie.202011702http://dx.doi.org/10.1002/anie.202011702
Liberman-Martin A L, Chu C K, Grubbs R H. Macromol Rapid Commun, 2017, 38: 1700058-1700072. doi:10.1002/marc.201700058http://dx.doi.org/10.1002/marc.201700058
Magkiriadou S, Park J G, Kim Y S, Manoharan V N. Phys Rev E, 2014, 90: 062302. doi:10.1103/physreve.90.062302http://dx.doi.org/10.1103/physreve.90.062302
Koay N, Burgess I B, Kay T M, Nerger B A, Miles-Rossouw M, Shirman T, Vu T L, England G, Phillips K R, Utech S, Vogel N, Kolle M, Aizenberg J. Opt Express, 2014, 22: 27750-27768. doi:10.1364/oe.22.027750http://dx.doi.org/10.1364/oe.22.027750
Park J G, Kim S H, Magkiriadou S, Choi T M, Kim Y S, Manoharan V N. Angew Chem Int Ed, 2014, 53: 2899-2903. doi:10.1002/anie.201309306http://dx.doi.org/10.1002/anie.201309306
0
浏览量
126
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构