浏览全部资源
扫码关注微信
复旦大学高分子科学系 聚合物分子工程国家重点实验室 上海 200433
[ "王国伟,男,1978年生. 复旦大学高分子科学系副教授. 2001、2004年分别在中北大学、郑州大学获得学士、硕士学位. 2007年获复旦大学理学博士学位. 2007年7月于复旦大学高分子科学系工作至今. 2015~2016年在卡内基梅隆大学作访问学者. 2011年度获教育部自然科学二等奖,2012年度获上海市自然科学三等奖,2017年度获上海市浦江人才计划项目支持. 研究领域: 高分子合成方法学研究和聚合物自组装研究、复杂结构聚合物的合成及性能研究、功能化聚醚的合成及应用研究等." ]
纸质出版日期:2022-01-20,
网络出版日期:2021-08-26,
收稿日期:2021-05-20,
录用日期:2021-06-06
移动端阅览
史柏扬,王国伟.聚合诱导自组装(PISA)技术的应用研究进展[J].高分子学报,2022,53(01):15-29.
Shi Bo-yang,Wang Guo-wei.Application of Polymerization-induced Self-assembly (PISA) Technology[J].ACTA POLYMERICA SINICA,2022,53(01):15-29.
史柏扬,王国伟.聚合诱导自组装(PISA)技术的应用研究进展[J].高分子学报,2022,53(01):15-29. DOI: 10.11777/j.issn1000-3304.2021.21156.
Shi Bo-yang,Wang Guo-wei.Application of Polymerization-induced Self-assembly (PISA) Technology[J].ACTA POLYMERICA SINICA,2022,53(01):15-29. DOI: 10.11777/j.issn1000-3304.2021.21156.
聚合诱导自组装(PISA)技术是制备嵌段共聚物纳米自组装体的一种新技术. 相较于传统的嵌段共聚物自组装技术,该技术具有边聚合、边组装的操作简便性特点,同时还具有纳米自组装体形态可控、固含量高(高达50%)等优点,使得聚合物纳米自组装体的规模化生产和应用成为可能. 经过十多年的发展,基于各种“活性”/可控聚合机理和各种配方组合的PISA体系已经被成功实现,PISA技术在各个领域的应用研究也得到了全面的推进. 目前关于PISA中的组装体形态研究已经有不少综述,而针对PISA技术应用方面的综述却鲜有报道. 因此,本文在简要介绍PISA技术的基本原理和发展现状的基础上,重点总结了PISA技术在纳米复合材料、生物医用材料、电池、功能涂料、Pickering乳化剂、纳米结构膜、水凝胶、发光材料等相关领域的研究动态和应用进展. 希望本综述能为PISA领域的研究者提供借鉴,并进一步促进聚合物自组装相关领域的研究进展.
The polymerization-induced self-assembly (PISA) has been developed as a versatile technique to prepare the block copolymer-based nano-objects. Compared with the traditional block copolymer-based self-assembly technology
the PISA technology is featured with a polymerization process and a simultaneous self-assembly process
as well as with well-controlled morphologies and high solid content (up to 50 wt%). These advantages have facilitated the large-scale production and application of the nano-objects. Based on the modification of various "living"/controlled polymerization mechanisms and the optimization of various formulations
the PISA technology has been well developed over the past decade. Correspondingly
the application of the PISA technology is also widely used. Up to now
several reviews on the morphology evolution of PISA technology have been presented. However
a comprehensive summary on the application of PISA technique is still needed. In this review
following with a brief introduction on the fundamental principle and the status of PISA technology
the application of PISA in nanocomposite materials
biomedical materials
batteries
functional coatings
Pickering emulsifiers
nanostructured membranes
hydrogels
luminescent materials
and other fields will be focused and summarized. This summary is hoped to depict a comprehensive outline of PISA technology in recent years and to prompt the development of the self-assembly technology in interdisciplinary field.
聚合诱导自组装(PISA)嵌段共聚物纳米自组装体
Polymerization-induced self-assembly (PISA)Block copolymerNano-objects
Climie I E, White E F T. J Polym Sci, 1960, 47(0149): 149-156. doi:10.1002/pol.1960.1204714913http://dx.doi.org/10.1002/pol.1960.1204714913
Canning S L, Smith G N, Armes S P. Macromolecules, 2016, 49(6): 1985-2001. doi:10.1021/acs.macromol.5b02602http://dx.doi.org/10.1021/acs.macromol.5b02602
Zheng G H, Zheng Q, Pan C Y. Macromol Chem Phys, 2006, 207(2): 216-223. doi:10.1002/macp.200500428http://dx.doi.org/10.1002/macp.200500428
Zheng Q, Zheng G H, Pan C Y. Polym Int, 2006, 55(9): 1114-1123. doi:10.1002/pi.2089http://dx.doi.org/10.1002/pi.2089
Penfold N J W, Yeow J, Boyer C, Armes S P. ACS Macro Lett, 2019, 8(8): 1029-1054. doi:10.1021/acsmacrolett.9b00464http://dx.doi.org/10.1021/acsmacrolett.9b00464
Chen S L, Shi P F, Zhang W Q. Chinese J Polym Sci, 2017, 35(4): 455-479. doi:10.1007/s10118-017-1907-8http://dx.doi.org/10.1007/s10118-017-1907-8
Derry M J, Fielding L A, Armes S P. Prog Polym Sci, 2016, 52: 1-18. doi:10.1016/j.progpolymsci.2015.10.002http://dx.doi.org/10.1016/j.progpolymsci.2015.10.002
Zhou H, Liu C G, Gao C Q, Qu Y Q, Shi K Y, Zhang W Q. J Polym Sci, Part A: Polym Chem, 2016, 54(11): 1517-1525. doi:10.1002/pola.28002http://dx.doi.org/10.1002/pola.28002
Darabi A, Jessop P G, Cunningham M F. Macromolecules, 2015, 48(7): 1952-1958. doi:10.1021/acs.macromol.5b00258http://dx.doi.org/10.1021/acs.macromol.5b00258
Qiao X G, Dugas P Y, Charieux B, Lansalot M, Bourgeat-Lami E. Macromolecules, 2015, 48(3): 545-556. doi:10.1021/ma5019473http://dx.doi.org/10.1021/ma5019473
Darabi A, Shirin-Abadi A R, Jessop P G, Cunningham M F. Macromolecules, 2015, 48(1): 72-80. doi:10.1021/ma502175chttp://dx.doi.org/10.1021/ma502175c
Wang G, Schmitt M, Wang Z Y, Lee B, Pan X C, Fu L Y, Yan J J, Li S P, Xie G J, Bockstaller M R, Matyjaszewski K. Macromolecules, 2016, 49(22): 8605-8615. doi:10.1021/acs.macromol.6b01966http://dx.doi.org/10.1021/acs.macromol.6b01966
Qu S W, Wang K, Khan H, Xiong W F, Zhang W Q. Polym Chem-UK, 2019, 10(9): 1150-1157. doi:10.1039/c8py01799ahttp://dx.doi.org/10.1039/c8py01799a
Cao M Y, Zhang Y X, Wang J, Fan X S, Wang G W. Macromol Rapid Commun, 2019, 40(20): 1900296. doi:10.1002/marc.201900296http://dx.doi.org/10.1002/marc.201900296
Wright D B, Touve M A, Thompson M P, Gianneschi N C. ACS Macro Lett, 2018, 7(4): 401-405. doi:10.1021/acsmacrolett.8b00091http://dx.doi.org/10.1021/acsmacrolett.8b00091
Wright D B, Thompson M P, Touve M A, Carlini A S, Gianneschi N C. Macromol Rapid Commun, 2019, 40(2): 1800467. doi:10.1002/marc.201970004http://dx.doi.org/10.1002/marc.201970004
Wright D B, Proetto M T, Touve M A, Gianneschi N C. Polym Chem-UK, 2019, 10(23): 2996-3000. doi:10.1039/c8py01539bhttp://dx.doi.org/10.1039/c8py01539b
Zhou C C, Wang J, Zhou P, Wang G W. Polym Chem-UK, 2020, 11(15): 2635-2639. doi:10.1039/d0py00296hhttp://dx.doi.org/10.1039/d0py00296h
Wang J, Cao M Y, Zhou P, Wang G W. Macromolecules, 2020, 53(8): 3157-3165. doi:10.1021/acs.macromol.0c00371http://dx.doi.org/10.1021/acs.macromol.0c00371
Okubo M, Sugihara Y, Kitayama Y, Kagawa Y, Minami H. Macromolecules, 2009, 42(6): 1979-1984. doi:10.1021/ma8025783http://dx.doi.org/10.1021/ma8025783
Kitayama Y, Moribe H, Kishida K, Okubo M. Polym Chem-UK, 2012, 3(6): 1555-1559. doi:10.1039/c2py20105dhttp://dx.doi.org/10.1039/c2py20105d
Sarkar J, Xiao L Q, Jackson A W, van Herk A M, Goto A. Polym Chem-UK, 2018, 9(39): 4900-4907. doi:10.1039/c8py01117fhttp://dx.doi.org/10.1039/c8py01117f
Xu Q H, Tian C, Zhang L F, Cheng Z P, Zhu X L. Macromol Rapid Commun, 2019, 40(2): 1800327. doi:10.1002/marc.201800327http://dx.doi.org/10.1002/marc.201800327
Shi B Y, Zhang H, Liu Y, Wang J, Zhou P, Cao M Y, Wang G W. Macromol Rapid Commun, 2019, 40(24): 1900547. doi:10.1002/marc.201900547http://dx.doi.org/10.1002/marc.201900547
Hanisch A, Yang P C, Kulak A N, Fielding L A, Meldrum F C, Armes S P. Macromolecules, 2016, 49(1): 192-204. doi:10.1021/acs.macromol.5b02212http://dx.doi.org/10.1021/acs.macromol.5b02212
Ning Y, Fielding L A, Ratcliffe L P D, Wang Y W, Meldrum F C, Armes S P. J Am Chem Soc, 2016, 138(36): 11734-11742. doi:10.1021/jacs.6b05563http://dx.doi.org/10.1021/jacs.6b05563
Kim Y Y, Fielding L A, Kulak A N, Nahi O, Mercer W, Jones E R, Armes S P, Meldrum F C. Chem Mater, 2018, 30(20): 7091-7099. doi:10.1021/acs.chemmater.8b02912http://dx.doi.org/10.1021/acs.chemmater.8b02912
Hendley C T, Fielding L A, Jones E R, Ryan A J, Armes S P, Estroff L A. J Am Chem Soc, 2018, 140(25): 7936-7945. doi:10.1021/jacs.8b03828http://dx.doi.org/10.1021/jacs.8b03828
Ning Y, Han L J, Douverne M, Penfold N J W, Derry M J, Meldrum F C, Armes S P. J Am Chem Soc, 2019, 141(6): 2481-2489. doi:10.1021/jacs.8b12291http://dx.doi.org/10.1021/jacs.8b12291
Ning Y, Han L J, Derry M J, Meldrum F C, Armes S P. J Am Chem Soc, 2019, 141(6): 2557-2567. doi:10.1021/jacs.8b12291http://dx.doi.org/10.1021/jacs.8b12291
Douverne M, Ning Y, Tatani A, Meldrum F C, Armes S P. Angew Chem Int Ed, 2019, 58(26): 8692-8697. doi:10.1002/anie.201901307http://dx.doi.org/10.1002/anie.201901307
Ding Z L, Ding M D, Gao C Q, Boyer C, Zhang W Q. Macromolecules, 2017, 50(19): 7593-7602. doi:10.1021/acs.macromol.7b01363http://dx.doi.org/10.1021/acs.macromol.7b01363
Karagoz B, Yeow J, Esser L, Prakash S M, Kuchel R P, Davis T P, Boyer C. Langmuir, 2014, 30(34): 10493-10502. doi:10.1021/la502656uhttp://dx.doi.org/10.1021/la502656u
Jiang Y Y, Xu N, Han J, Yu Q P, Guo L, Gao P, Lu X H, Cai Y L. Polym Chem-UK, 2015, 6(27): 4955-4965. doi:10.1039/c5py00656bhttp://dx.doi.org/10.1039/c5py00656b
Shi P F, Gao C Q, He X, Sun P C, Zhang W Q. Macromolecules, 2015, 48(5): 1380-1389. doi:10.1021/acs.macromol.5b00021http://dx.doi.org/10.1021/acs.macromol.5b00021
Tan M T, Shi Y, Fu Z F, Yang W T. Polym Chem-UK, 2018, 9(9): 1082-1094. doi:10.1039/c7py01905jhttp://dx.doi.org/10.1039/c7py01905j
Zhang X W, Cardozo A F, Chen S, Zhang W J, Julcour C, Lansalot M, Blanco J F, Gayet F, Delmas H, Charleux B, Manoury E, D'Agosto F, Poli R. Chem-Eur J, 2014, 20(47): 15505-15517. doi:10.1002/chem.201403819http://dx.doi.org/10.1002/chem.201403819
Chen S, Cardozo A F, Julcour C, Blanco J F, Barthe L, Gayet F, Lansalot M, D'Agosto F, Delmas H, Manoury E, Poli R. Polymer, 2015, 72: 327-335. doi:10.1016/j.polymer.2015.02.024http://dx.doi.org/10.1016/j.polymer.2015.02.024
Cardozo A F, Julcour C, Barthe L, Blanco J F, Chen S, Gayet F, Manoury E, Zhang X W, Lansalot M, Charleux B, D'Agosto F, Poli R, Delmas H. J Catal, 2015, 324: 1-8. doi:10.1016/j.jcat.2015.01.009http://dx.doi.org/10.1016/j.jcat.2015.01.009
Lobry E, Cardozo A F, Barthe L, Blanco J F, Delmas H, Chen S, Gayet F, Zhang X W, Lansalot M, D'Agosto F, Poli R, Manoury E, Julcour C. J Catal, 2016, 342: 164-172. doi:10.1016/j.jcat.2016.07.023http://dx.doi.org/10.1016/j.jcat.2016.07.023
Canton I, Warren N J, Chahal A, Amps K, Wood A, Weightman R, Wang E, Moore H, Armes S P. ACS Central Sci, 2016, 2(2): 65-74. doi:10.1021/acscentsci.5b00370http://dx.doi.org/10.1021/acscentsci.5b00370
Mitchell D E, Lovett J R, Armes S P, Gibson M I. Angew Chem Int Ed, 2016, 55(8): 2801-2804. doi:10.1002/anie.201511454http://dx.doi.org/10.1002/anie.201511454
Keller D, Beloqui A, Martinez-Martinez M, Ferrer M, Delaittre G. Biomacromolecules, 2017, 18(9): 2777-2788. doi:10.1021/acs.biomac.7b00677http://dx.doi.org/10.1021/acs.biomac.7b00677
Tan J B, Sun H, Yu M G, Sumerlin B S, Zhang L. ACS Macro Lett, 2015, 4(11): 1249-1253. doi:10.1021/acsmacrolett.5b00748http://dx.doi.org/10.1021/acsmacrolett.5b00748
Tan J B, Liu D D, Bai Y H, Huang C D, Li X L, He J, Xu Q, Zhang L. Macromolecules, 2017, 50(15): 5798-5806. doi:10.1021/acs.macromol.7b01219http://dx.doi.org/10.1021/acs.macromol.7b01219
Zhang W J, Hong C Y, Pan C Y. Biomacromolecules, 2016, 17(9): 2992-2999. doi:10.1021/acs.biomac.6b00819http://dx.doi.org/10.1021/acs.biomac.6b00819
Karagoz B, Esser L, Duong H T, Basuki J S, Boyer C, Davis T P. Polym Chem-UK, 2014, 5(2): 350-355. doi:10.1039/c3py01306ehttp://dx.doi.org/10.1039/c3py01306e
Qiu L, Xu C R, Zhong F, Hong C Y, Pan C Y. ACS Appl Mater Interfaces, 2016, 8(28): 18347-18359. doi:10.1021/acsami.6b04693http://dx.doi.org/10.1021/acsami.6b04693
Zhang W J, Hong C Y, Pan C Y. Biomacromolecules, 2017, 18(4): 1210-1217. doi:10.1021/acs.biomac.6b01887http://dx.doi.org/10.1021/acs.biomac.6b01887
Zhang W J, Hong C Y, Pan C Y. Macromol Rapid Commun, 2019, 40(2): 1800279. doi:10.1002/marc.201800279http://dx.doi.org/10.1002/marc.201800279
Phan H, Taresco V, Penelle J, Couturaud B. Biomater Sci-UK, 2021, 9(1): 38-50. doi:10.1039/d0bm01406khttp://dx.doi.org/10.1039/d0bm01406k
Yuan B, Luo G M, Liang J, Cheng F Y, Zhang W Q, Chen J. J Energy Chem, 2019, 38: 55-59. doi:10.1016/j.jechem.2019.01.004http://dx.doi.org/10.1016/j.jechem.2019.01.004
Demarteau J, de Anastro A F, Shaplov A S S, Mecerreyes D. Polym Chem-UK, 2020, 11(8): 1481-1488. doi:10.1039/c9py01552chttp://dx.doi.org/10.1039/c9py01552c
Cordella D, Ouhib F, Aqil A, Defize T, Jerome C, Serghei A, Drockenmuller E, Aissou K, Taton D, Detrembleur C. ACS Macro Lett, 2017, 6(2): 121-126. doi:10.1021/acsmacrolett.6b00899http://dx.doi.org/10.1021/acsmacrolett.6b00899
Samanta S, Banerjee S L, Ghosh S K, Singha N K. ACS Appl Mater Interfaces, 2019, 11(47): 44722-44734. doi:10.1021/acsami.9b15964http://dx.doi.org/10.1021/acsami.9b15964
Albiges R, Klein P, Roi S, Stoffelbach F, Creton C, Bouteiller L, Rieger J. Polym Chem-UK, 2017, 8(34): 4992-4995. doi:10.1039/c7py00302ahttp://dx.doi.org/10.1039/c7py00302a
Chakrabarty A, Ponnupandian S, Kang N G, Mays J W, Singha N K. J Polym Sci, Part A: Polym Chem, 2018, 56(3): 266-275. doi:10.1002/pola.28883http://dx.doi.org/10.1002/pola.28883
Ouhib F, Dirani A, Aqil A, Glinel K, Nysten B, Jonas A M, Jerome C, Detrembleur C. Polym Chem-UK, 2016, 7(24): 3998-4003. doi:10.1039/c6py00661bhttp://dx.doi.org/10.1039/c6py00661b
Thompson K L, Mable C J, Cockram A, Warren N J, Cunningham V J, Jones E R, Verber R, Armes S P. Soft Matter, 2014, 10(43): 8615-8626. doi:10.1039/c4sm01724bhttp://dx.doi.org/10.1039/c4sm01724b
Cunningham V J, Armes S P, Musa O M. Polym Chem-UK, 2016, 7(10): 1882-1891. doi:10.1039/c6py00138fhttp://dx.doi.org/10.1039/c6py00138f
Thompson K L, Mable C J, Lane J A, Derry M J, Fielding L A, Armes S P. Langmuir, 2015, 31(14): 4137-4144. doi:10.1021/acs.langmuir.5b00741http://dx.doi.org/10.1021/acs.langmuir.5b00741
Mable C J, Warren N J, Thompson K L, Mykhaylyk O O, Armes S P. Chem Sci, 2015, 6(11): 6179-6188. doi:10.1039/c5sc02346ghttp://dx.doi.org/10.1039/c5sc02346g
Zhang Q, Wang C J, Fu M L, Wang J L, Zhu S P. Polym Chem-UK, 2017, 8(36): 5474-5480. doi:10.1039/c7py00912ghttp://dx.doi.org/10.1039/c7py00912g
Shen L L, Guo H Z, Zheng J W, Wang X, Yang Y Q, An Z S. ACS Macro Lett, 2018, 7(3): 287-292. doi:10.1021/acsmacrolett.8b00070http://dx.doi.org/10.1021/acsmacrolett.8b00070
Zeng M, Li X, Zhang Y C, Chen X, Sui X F, Yuan J Y. Polymer, 2020, 206: 122853. doi:10.1016/j.polymer.2020.122853http://dx.doi.org/10.1016/j.polymer.2020.122853
Upadhyaya L, Semsarilar M, Fernandez-Pacheco R, Martinez G, Mallada R, Deratani A, Quemener D. Polym Chem-UK, 2016, 7(10): 1899-1906. doi:10.1039/c5py01888ahttp://dx.doi.org/10.1039/c5py01888a
Upadhyaya L, Semsarilar M, Nehache S, Cot D, Fernandez-Pacheco R, Martinez G, Mallada R, Deratani A, Quemener D. Macromolecules, 2016, 49(20): 7908-7916. doi:10.1021/acs.macromol.6b01738http://dx.doi.org/10.1021/acs.macromol.6b01738
Ma J, Andriambololona H M, Quemener D, Semsarilar M. J Membr Sci, 2018, 548: 42-49. doi:10.1016/j.memsci.2017.11.010http://dx.doi.org/10.1016/j.memsci.2017.11.010
Upadhyaya L, Semsarilar M, Quemener D, Fernandez-Pacheco R, Martinez G, Mallada R, Coelhoso I M, Portugal C A M, Crespo J G. J Membr Sci, 2018, 551: 273-282. doi:10.1016/j.memsci.2018.01.032http://dx.doi.org/10.1016/j.memsci.2018.01.032
Rubio A, Desnos G, Semsarilar M. Macromol Chem Phys, 2018, 219(20): 1800351. doi:10.1002/macp.201800351http://dx.doi.org/10.1002/macp.201800351
Upadhyaya L, Egbosimba C, Qian X H, Wickramasinghe R, Fernandez-Pacheco R, Coelhoso I M, Portugal C A M, Crespo J G, Quemener D, Semsarilar M. Macromol Rapid Commun, 2019, 40(2): 1800333. doi:10.1002/marc.201800333http://dx.doi.org/10.1002/marc.201800333
Luppi L, Babut T, Petit E, Rolland M, Quemener D, Soussan L, Moradi M A, Semsarilar M. Polym Chem-UK, 2019, 10(3): 336-344. doi:10.1039/c8py01351ahttp://dx.doi.org/10.1039/c8py01351a
Li Y C, Ye Z X, Shen L L, Xu Y Y, Zhu A Q, Wu P Y, An Z S. Macromolecules, 2016, 49(8): 3038-3048. doi:10.1021/acs.macromol.5b02538http://dx.doi.org/10.1021/acs.macromol.5b02538
Morimura M, Ida S, Oyama M, Takeshita H, Kanaoka S. Macromolecules, 2021, 54(4): 1732-1741. doi:10.1021/acs.macromol.0c02569http://dx.doi.org/10.1021/acs.macromol.0c02569
Du Y, Jia S, Chen Y, Zhang L, Tan J B. ACS Macro Lett, 2021, 10(2): 297-306. doi:10.1021/acsmacrolett.1c00014http://dx.doi.org/10.1021/acsmacrolett.1c00014
Huo M, Ye Q Q, Che H L, Wang X S, Wei Y, Yuan J Y. Macromolecules, 2017, 50(3): 1126-1133. doi:10.1021/acs.macromol.6b02499http://dx.doi.org/10.1021/acs.macromol.6b02499
Huang J Y, Liu D D, Chen Y, Zhang L, Tan J B. Macromol Rapid Commun, 2021, 42(7): 2000720. doi:10.1002/marc.202000720http://dx.doi.org/10.1002/marc.202000720
Ye Qiquan(叶齐全), Zheng Mingxin(郑明心), Chen Xi(陈曦), Li Dan(李丹), Tian Weiguo(田卫国), Zhang Jun(张军), Yuan Jinying(袁金颖). Acta Polymerica Sinica(高分子学报), 2019, 50(4): 344-351. doi:10.11777/j.issn1000-3304.2018.18256http://dx.doi.org/10.11777/j.issn1000-3304.2018.18256
Liu C, Hong C Y, Pan C Y. Polym Chem-UK, 2020, 11(22): 3673-3689. doi:10.1039/d0py00455chttp://dx.doi.org/10.1039/d0py00455c
D'Agosto F, Rieger J, Lansalot M. Angew Chem Int Ed, 2020, 59(22): 8368-8392. doi:10.1002/anie.201911758http://dx.doi.org/10.1002/anie.201911758
Tan J B, Liu D D, Huang C D, Li X L, He J, Xu Q, Zhang L. Macromol Rapid Commun, 2017, 38(15): 1700195. doi:10.1002/marc.201770049http://dx.doi.org/10.1002/marc.201770049
Liu H, Gao C Q, Ding Z L, Zhang W Q. Macromol Chem Phys, 2016, 217(3): 467-476. doi:10.1002/macp.201500273http://dx.doi.org/10.1002/macp.201500273
Verber R, Blanazs A, Armes S P. Soft Matter, 2012, 8(38): 9915-9922. doi:10.1039/c2sm26156ahttp://dx.doi.org/10.1039/c2sm26156a
Lovett J R, Warren N J, Ratcliffe L P D, Kocik M K, Armes S P. Angew Chem Int Ed, 2015, 54(4): 1279-1283. doi:10.1002/anie.201409799http://dx.doi.org/10.1002/anie.201409799
Penfold N J W, Lovett J R, Warren N J, Verstraete P, Smets J, Armes S P. Polym Chem-UK, 2016, 7(1): 79-88. doi:10.1039/c5py01510chttp://dx.doi.org/10.1039/c5py01510c
Tan J B, Liu D D, Zhang X C, Huang C D, He J, Xu Q, Li X L, Zhang L. RSC Adv, 2017, 7(37): 23114-23121. doi:10.1039/c7ra02770bhttp://dx.doi.org/10.1039/c7ra02770b
Tan J B, Zhang X C, Liu D D, Bai Y H, Huang C D, Li X L, Zhang L. Macromol Rapid Commun, 2017, 38(13): 1600508. doi:10.1002/marc.201600508http://dx.doi.org/10.1002/marc.201600508
Blanazs A, Verber R, Mykhaylyk O O, Ryan A J, Heath J Z, Douglas C W I, Armes S P. J Am Chem Soc, 2012, 134(23): 9741-9748. doi:10.1021/ja3024059http://dx.doi.org/10.1021/ja3024059
Rieger J, Grazon C, Charleux B, Alaimo D, Jerome C. J Polym Sci, Part A: Polym Chem, 2009, 47(9): 2373-2390. doi:10.1002/pola.23329http://dx.doi.org/10.1002/pola.23329
Esser L, Truong N P, Karagoz B, Moffat B A, Boyer C, Quinn J F, Whittaker M R, Davis T P. Polym Chem-UK, 2016, 7(47): 7325-7337. doi:10.1039/c6py01797ehttp://dx.doi.org/10.1039/c6py01797e
Zhao W, Ta H T, Zhang C, Whittaker A K. Biomacromolecules, 2017, 18(4): 1145-1156. doi:10.1021/acs.biomac.6b01788http://dx.doi.org/10.1021/acs.biomac.6b01788
Blackman L D, Varlas S, Arno M C, Fayter A, Gibson M I, O'Reilly R K. ACS Macro Lett, 2017, 6(11): 1263-1267. doi:10.1021/acsmacrolett.7b00725http://dx.doi.org/10.1021/acsmacrolett.7b00725
He J, Cao J P, Chen Y, Zhang L, Tan J B. ACS Macro Lett, 2020, 9(4): 533-539. doi:10.1021/acsmacrolett.0c00151http://dx.doi.org/10.1021/acsmacrolett.0c00151
Varlas S, Foster J C, Georgiou P G, Keogh R, Husband J T, Williams D S, O'Reilly R K. Nanoscale, 2019, 11(26): 12643-12654. doi:10.1039/c9nr02507chttp://dx.doi.org/10.1039/c9nr02507c
Sun C W, Liu J, Gong Y D, Wilkinson D P, Zhang J J. Nano Energy, 2017, 33: 363-386. doi:10.1016/j.nanoen.2017.01.028http://dx.doi.org/10.1016/j.nanoen.2017.01.028
Peinemann K V, Abetz V, Simon P F W. Nat Mater, 2007, 6(12): 992-996. doi:10.1038/nmat2038http://dx.doi.org/10.1038/nmat2038
Huo M, Zhang Y Y, Zeng M, Liu L, Wei Y, Yuan J Y. Macromolecules, 2017, 50(20): 8192-8201. doi:10.1021/acs.macromol.7b01437http://dx.doi.org/10.1021/acs.macromol.7b01437
Guan S, Zhang C, Wen W, Qu T, Zheng X X, Zhao Y B, Chen A H. ACS Macro Lett, 2018, 7(3): 358-363. doi:10.1021/acsmacrolett.8b00082http://dx.doi.org/10.1021/acsmacrolett.8b00082
Cheng X X, Miao T F, Yin L, Ji Y J, Li Y Y, Zhang Z B, Zhang W, Zhu X L. Angew Chem Int Ed, 2020, 59(24): 9669-9677. doi:10.1002/anie.202001657http://dx.doi.org/10.1002/anie.202001657
Guan S, Chen A H. Macromolecules, 2020, 53(15): 6235-6245. doi:10.1021/acs.macromol.0c00959http://dx.doi.org/10.1021/acs.macromol.0c00959
Huo M, Li D, Song G J, Zhang J, Wu D C, Wei Y, Yuan J Y. Macromol Rapid Commun, 2018, 39(7):1700840. doi:10.1002/marc.201700840http://dx.doi.org/10.1002/marc.201700840
Li Y H, Lu Q Z, Chen Q M, Wu X, Shen J L, Shen L L. RSC Adv, 2021, 11(3): 1729-1735. doi:10.1039/d0ra09548fhttp://dx.doi.org/10.1039/d0ra09548f
Li X L, Tan J B, Xu Q, He J, Zhang L. Macromol Rapid Commun, 2018, 39(23): 1800473. doi:10.1002/marc.201800473http://dx.doi.org/10.1002/marc.201800473
Zheng R H, Liu G J, Devlin M, Hux K, Jao T C. Tribol Trans, 2010, 53(1): 97-107. doi:10.4271/2002-01-2793http://dx.doi.org/10.4271/2002-01-2793
Fielding L A, Derry M J, Ladmiral V, Rosselgong J, Rodrigues A M, Ratcliffe L P D, Sugihara S, Armes S P. Chem Sci, 2013, 4(5): 2081-2087. doi:10.1039/c3sc50305dhttp://dx.doi.org/10.1039/c3sc50305d
0
浏览量
874
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构