浏览全部资源
扫码关注微信
1.中国科学院苏州纳米技术与纳米仿生研究所 纳米轻量化重点实验室 苏州 215123
2.中国科学技术大学 纳米技术与纳米仿生学院 合肥 230026
E-mail: jwang2014@sinano.ac.cn
纸质出版日期:2022-02-20,
网络出版日期:2021-10-15,
收稿日期:2021-07-10,
录用日期:2021-08-17
移动端阅览
方强,单夏梦,刘玲等.相变气凝胶的设计合成及其微环境调控性能研究[J].高分子学报,2022,53(02):165-173.
Fang Qiang,Shan Xia-meng,Liu Ling,et al.Design and Synthesis of Phase-Change-Material Aerogels for Personal Thermal Management[J].ACTA POLYMERICA SINICA,2022,53(02):165-173.
方强,单夏梦,刘玲等.相变气凝胶的设计合成及其微环境调控性能研究[J].高分子学报,2022,53(02):165-173. DOI: 10.11777/j.issn1000-3304.2021.21187.
Fang Qiang,Shan Xia-meng,Liu Ling,et al.Design and Synthesis of Phase-Change-Material Aerogels for Personal Thermal Management[J].ACTA POLYMERICA SINICA,2022,53(02):165-173. DOI: 10.11777/j.issn1000-3304.2021.21187.
人体微环境调控可以通过材料本身性能的调控实现穿着凉爽舒适,对提高生活品质、减少碳排放具有重要价值. 然而传统材料仅能单向地实现致冷或保温,同一材料实现致冷、保温双向功能,依然是本领域重要挑战和值得及时探索的方向. 本文采用冷冻-解冻制备水凝胶与冷冻干燥技术,设计合成系列以聚乙烯醇和相变微胶囊为骨架的相变气凝胶. 此类相变气凝胶同时具有优异的压缩和拉伸性能,能够压缩55%以上或拉伸达25%,突破了气凝胶不可拉伸、相变材料硬脆不可拉伸的特征. 比表面积最高达14.4 m
2
/g,密度和热导率分别低至0.11 g/cm
3
和0.040 W/(m·K),相变焓可进行调控,最高达到46.1 J/g. 进一步的实验证明,相变气凝胶较于热导率更佳的聚乙烯醇气凝胶具有更加优异的温度调控能力,温度维持能力最高可达纯气凝胶的2.6倍. 因此相变气凝胶同时具有优异的绝热和调温性能,在微环境调控领域具有重要应用价值.
Personal thermal management is a strategy to energy management of human body and its local environment
which can significantly improve human body thermal comfort and reduce energy consumption on building cooling and heating. Traditional approaches could either self-cooling or thermal insulation
but could hardly fulfill both thermal insulation and cooling in one structure. Thus
it’s still a challenge to design and synthesize materials with dual functions. In this work
phase-change-material aerogels (PCMAs) were designed and synthesized
via
a sol-gel and freeze drying process
in which PVA and microencapsulating PCM acted as stable skeleton for the porous structures. The PCMAs showed excellent mechanical properties and could be compressed up to 55% or be tensile stressed up to 25%
making them outstanding for traditional aerogels and PCMs. The specific surface areas of the aerogel reached 14.4 m
2
/g
and extremely low density (0.11 g/cm
3
) and low thermal conductivity (0.040 W/(m·K)) were also achieved. Impressively
the PCMAs exhibited high latent heat up to 46.1 J/g. When the outer temperature was 78 ℃
the inner temperature protected by PCMA was
ca
. 60 ℃
which was 18 ℃ lower. On the other hand
when the environment temperature was reduced
the temperature reservation ability of the PCMA was 2.6 times of that of pure PVA aerogel (which possessed lower thermal conductivity of 0.028 W/(m·K) but zero latent heat). The results indicated that the PCMAs had excellent thermal insulation and temperature reservation capacities
suggesting that the PCMAs could be ideal candidates for personal thermal mana
gement.
气凝胶相变材料多孔材料聚乙烯醇
AerogelPhase change materialsPorous MaterialsPoly(vinyl alcohol)
Peng Y, Cui Y. Joule, 2020, 4(4): 1-19. doi:10.1016/j.joule.2020.02.011http://dx.doi.org/10.1016/j.joule.2020.02.011
Pakdel E, Naebe M, Sun L, Wang X. ACS Appl Mater Interfaces, 2019, 11(14): 13039-13057. doi:10.1021/acsami.8b19067http://dx.doi.org/10.1021/acsami.8b19067
Peng L, Su B, Yu A, Jiang X. Cellulose, 2019, 26(11): 6415-6448. doi:10.1007/s10570-019-02534-6http://dx.doi.org/10.1007/s10570-019-02534-6
Sun D, Iqbal K. Cellulose, 2017, 24(9): 3525-3543. doi:10.1007/s10570-017-1326-6http://dx.doi.org/10.1007/s10570-017-1326-6
Hardy J D, Dubois E F. Proc Natl Acad Sci USA, 1937, 23(12): 624-631. doi:10.1073/pnas.23.12.624http://dx.doi.org/10.1073/pnas.23.12.624
Wendt D, Van Loon L J C., Lichtenbelt W D V M. Sports Med, 2007, 37(38): 669-682. doi:10.2165/00007256-200737080-00002http://dx.doi.org/10.2165/00007256-200737080-00002
Kou J, Juradao Z, Chen Z, Fan S, Minnich A J. ACS Photonics, 2017, 4(3): 626-630. doi:10.1021/acsphotonics.6b00991http://dx.doi.org/10.1021/acsphotonics.6b00991
Mandal J, Fu Y, Overvig A C, Jia M, Sun K, Shi N N, Zhou H, Xiao X, Yu N, Yang Y. Science, 2018, 362(6412): 315-319. doi:10.1126/science.aat9513http://dx.doi.org/10.1126/science.aat9513
Chen Z, Zhu L, Raman A, Fan S. Nat Commun, 2016, 7: 13729. doi:10.1038/ncomms13729http://dx.doi.org/10.1038/ncomms13729
Hsu P, Song A Y, Carysse P B, Liu C, Peng Y, Xie J, Fan S, Cui Y. Science, 2016, 353(6303): 1019-1023. doi:10.1126/science.aaf5471http://dx.doi.org/10.1126/science.aaf5471
Jiang S, Miao D, Yang G, Chen Z, Li A, Shang S. J Mater Sci: Mater Electron, 2015, 26(5): 3364-3369. doi:10.1007/s10854-015-2841-6http://dx.doi.org/10.1007/s10854-015-2841-6
Li Y, Zhang Z, Li X, Zhang J, Lou H, Shi X, Cheng X, Peng H. J Mater Chem C, 2017, 5(1): 41-46. doi:10.1039/c6tc04399bhttp://dx.doi.org/10.1039/c6tc04399b
Wang Jing(王静), Wang Jin(王锦). Acta Chim Sinica(化学学报), 2021, 79(4): 430-442. doi:10.6023/A20120561http://dx.doi.org/10.6023/A20120561
Qie Shuyan(郄淑燕), Hao Yin(郝莹), Liu Zongjian(刘宗建), Wang Jin(王锦), Xi Jianing(席家宁). Acta Chim Sinica(化学学报), 2020, 78(3): 232-244. doi:10.6023/a20010006http://dx.doi.org/10.6023/a20010006
Liu Z, Ran Y, Xi J, Wang J. Soft Matter, 2020, 16(40): 9160-9175. doi:10.1039/d0sm01261khttp://dx.doi.org/10.1039/d0sm01261k
Liu Z, Ye L, Xi J, Wang J, Feng Z. Prog Polym Sci, 2021, 118: 101408. doi:10.1016/j.progpolymsci.2021.101408http://dx.doi.org/10.1016/j.progpolymsci.2021.101408
Du A, Zhou B, Zhang Z, Shen J. Materials, 2013, 6(3): 941-968. doi:10.1016/j.matlet.2013.05.111http://dx.doi.org/10.1016/j.matlet.2013.05.111
Qin L, Zhao X, He Y, Wang H, Wei H, Zhu Q, Zhang T, Qin Y, Du A. Materials, 2020, 13(7): 1624. doi:10.3390/ma13071624http://dx.doi.org/10.3390/ma13071624
Lermontov S, Malkova A, Sipyagina N, Straumal E, Maksimkin A, Kolesnikov E, Senatov F. Polymer, 2019, 182: 121824. doi:10.1016/j.polymer.2019.121824http://dx.doi.org/10.1016/j.polymer.2019.121824
Khedaioui D, Boisson C, D’Agosto F, Montarnal D. Angew Chem Int Ed, 2019, 58(44): 15883. doi:10.1002/anie.201908257http://dx.doi.org/10.1002/anie.201908257
Revaiah R G, Kotresh T M, Kandasubramanian B. J Text Institute, 2020, 111(2): 1627987. doi:10.1080/00405000.2019.1627987http://dx.doi.org/10.1080/00405000.2019.1627987
Mondal S. Appl Therm Eng, 2008, 28(12): 1536-1550. doi:10.1016/j.applthermaleng.2007.08.009http://dx.doi.org/10.1016/j.applthermaleng.2007.08.009
Rathod M K, Banerjee J. Renew Sustain Energy Rev, 2013, 18: 246-258. doi:10.1016/j.rser.2012.10.022http://dx.doi.org/10.1016/j.rser.2012.10.022
Nejman A, Cieslak M, Gajdzicki B, Goetzendorf-Grabowska B, Karaszewska A. Thermochim Acta, 2014, 589: 158-163. doi:10.1016/j.tca.2014.05.037http://dx.doi.org/10.1016/j.tca.2014.05.037
Nejman A, Cueslak M. Appl Therm Eng, 2017, 127: 212-223. doi:10.1016/j.applthermaleng.2017.08.037http://dx.doi.org/10.1016/j.applthermaleng.2017.08.037
Iqbal K, Sun D. Renew Energy, 2014, 71: 473-479. doi:10.1016/j.renene.2014.05.063http://dx.doi.org/10.1016/j.renene.2014.05.063
Hassabo A G, Mohamed A L. Carbohydr Polym, 2017, 165: 421-428. doi:10.1016/j.carbpol.2017.02.074http://dx.doi.org/10.1016/j.carbpol.2017.02.074
Li G, Zhang X, Wang J, Fang J. J Mater Chem A, 2016, 4(43): 17042-17049. doi:10.1039/c6ta07587hhttp://dx.doi.org/10.1039/c6ta07587h
Li G, Hong G, Dong D, Song W, Zhang X. Adv Mater, 2018, 30(30): 1801754. doi:10.1002/adma.201801754http://dx.doi.org/10.1002/adma.201801754
Du X, Qiu J, Deng S, Du Z, Cheng X, Wang H. ACS Appl Mater Interfaces, 2020, 12(5): 5695-5703. doi:10.1021/acsami.9b17771http://dx.doi.org/10.1021/acsami.9b17771
Wang J, Zhang X. ACS Nano, 2015, 9(11): 11389-11397. doi:10.1021/acsnano.5b05281http://dx.doi.org/10.1021/acsnano.5b05281
Wang J, Fang Q, Ye L, Zhang A, Feng Z. Soft Matter, 2020, 16(25): 5906-5909. doi:10.1039/d0sm00979bhttp://dx.doi.org/10.1039/d0sm00979b
Wang H, Tian B, Wang F, Zhang J, Wang Z. Mater Lett, 2021, 290: 129505. doi:10.1016/j.matlet.2021.129505http://dx.doi.org/10.1016/j.matlet.2021.129505
Yuan Conghui(袁丛辉), Lin Songbai(林松柏), Ke Airu(柯爱茹), Liu Bo(刘博), Quan Zhilong(全志龙). Acta Chim Sinica (化学学报), 2009, 67(16): 1929-1935. doi:10.3321/j.issn:0567-7351.2009.16.019http://dx.doi.org/10.3321/j.issn:0567-7351.2009.16.019
Liu T, Peng X, Chen Y, Zhang J, Jiao C, Wang H. Polym Chem, 2020, 11(29): 4878-4797. doi:10.1039/d0py00023jhttp://dx.doi.org/10.1039/d0py00023j
Tan M, Wang J, Song W, Fang J, Zhang X. J Mater Chem A, 2019, 7(3): 1244-1251. doi:10.1039/c8ta10057hhttp://dx.doi.org/10.1039/c8ta10057h
Xiang H, Chen S, Wang S, Peng C, Zhu M. Chinese J Chem, 2012, 30(9): 2247-2251. doi:10.1002/cjoc.201200602http://dx.doi.org/10.1002/cjoc.201200602
Zhang Junyan(张君妍), Meng Si(孟思), Chen Wenping(陈文萍), Cheng Yanhua(成艳华), Zhu Meifang(朱美芳). Acta Polymerica Sinica(高分子学报), 2021, 52(1): 69-77. doi:10.11777/j.issn1000-3304.2020.20143http://dx.doi.org/10.11777/j.issn1000-3304.2020.20143
Liu Z, Lyu J, Fang D, Zhang X. ACS Nano, 2019, 13(5): 5703-5711. doi:10.1021/acsnano.9b01094http://dx.doi.org/10.1021/acsnano.9b01094
Wang J, Wang X, Zhang X. J Mater Chem A, 2017, 5(9): 4308-4313. doi:10.1039/c6ta09677hhttp://dx.doi.org/10.1039/c6ta09677h
Wang J, Du R, Zhang X. ACS Appl Mater Interfaces, 2018, 10(2): 1468-1473. doi:10.1021/acsami.7b18741http://dx.doi.org/10.1021/acsami.7b18741
Wang H, Zhang C, Zhang Z, Zhou B, Shen J, Du A. Adv Funct Mater, 2020, 30(48): 2005513. doi:10.1002/adfm.202005513http://dx.doi.org/10.1002/adfm.202005513
Du A, Wang H, Zhou B, Zhang C, Wu X, Ge Y, Niu T, Ji X, Zhang T, Zhang Z, Wu G, Shen J. Chem Mater, 2018, 30(19): 6849-6857. doi:10.1021/acs.chemmater.8b02926http://dx.doi.org/10.1021/acs.chemmater.8b02926
Zu G, Zeng S, Yang B, Huang J. J Mater Chem A, 2021, 9(9): 5769-5779. doi:10.1039/d0ta12244khttp://dx.doi.org/10.1039/d0ta12244k
Zu G, Kanamori K, Wang X, Nakanishi K, Shen J. Chem Mater, 2020, 32(4): 1595-1604. doi:10.1021/acs.chemmater.9b04877http://dx.doi.org/10.1021/acs.chemmater.9b04877
Zu G, Kanamori K, Nakanishi K, Lu X, Yu K, Huang J, Sugimura H. ACS Appl Mater Interfaces, 2019, 11(46): 43533-43542. doi:10.1021/acsami.9b16746http://dx.doi.org/10.1021/acsami.9b16746
Wang J, Du Y, Wang J, Gong W, Xu L, Yan L, You Y, Lu W, Zhang, X. Langmuir, 2021, 37(19): 5923-5931. doi:10.1021/acs.langmuir.1c00476http://dx.doi.org/10.1021/acs.langmuir.1c00476
Saberi A A. Phys Rep, 2015, 578: 1-32. doi:10.1016/j.physrep.2015.03.003http://dx.doi.org/10.1016/j.physrep.2015.03.003
0
浏览量
149
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构