浏览全部资源
扫码关注微信
四川大学化学学院 环保型高分子材料国家地方联合工程实验室 成都 610064
E-mail: gangwu@scu.edu.cn
纸质出版日期:2022-03-20,
网络出版日期:2021-12-23,
收稿日期:2021-08-13,
录用日期:2021-08-27
移动端阅览
杨正和,田国强,陈思翀等.引入δ-内酯疏水取代烷基结构实现聚对二氧环己酮的性能调控[J].高分子学报,2022,53(03):236-244.
Yang Zheng-he,Tian Guo-qiang,Chen Si-chong,et al.Regulating Properties of Poly(p-dioxanone) Enabled by Introducing n-Alkyl Substituents of δ-Lactone[J].ACTA POLYMERICA SINICA,2022,53(03):236-244.
杨正和,田国强,陈思翀等.引入δ-内酯疏水取代烷基结构实现聚对二氧环己酮的性能调控[J].高分子学报,2022,53(03):236-244. DOI: 10.11777/j.issn1000-3304.2021.21226.
Yang Zheng-he,Tian Guo-qiang,Chen Si-chong,et al.Regulating Properties of Poly(p-dioxanone) Enabled by Introducing n-Alkyl Substituents of δ-Lactone[J].ACTA POLYMERICA SINICA,2022,53(03):236-244. DOI: 10.11777/j.issn1000-3304.2021.21226.
可反复化学循环、可生物降解的聚对二氧环己酮(PPDO),存在水解降解快等问题,不利于其储存和使用. 基于此,本文通过将不同正烷基取代的
δ
-内酯(RVL)分别与对二氧环己酮(PDO)在磷酸二苯酯催化下本体共聚,高效地合成了3种结构和组分可控的PPDO基共聚物(PDRVL). 通过热重分析(TGA)、差示扫描量热分析(DSC)、广角X射线衍射分析(WXRD)、拉伸测试研究了共聚物的热稳定性、结晶性能和力学性能. 结果表明:PDRVL为半结晶共聚物,固定其分子量和RVL引入量改变取代烷基碳原子数为3、5、7,共聚物初始分解温度、熔融温度、屈服强度和断裂伸长可分别控制在245~251 ℃、96.5~99.8 ℃、21.6~24.3 MPa和212.7%~235%范围,能满足加工和使用要求. 水接触角(WCA)和吸水率测试表明,随RVL的取代烷基链碳原子数目增加,共聚物可从亲水转变为疏水,且吸水率也随之降低. 对比研究了PPDO和PDRVL在纯水中的降解情况,由降解过程中样品的质量保留率、特性黏数保留率、表面微观形貌等变化可以得出,含取代烷基链的疏水RVL单体的引入显著延缓了PPDO的水解降解,从而实现其降解速度在一定范围内的调控.
Repeatedly chemically recyclable and biodegradable poly(
p
-dioxanone) (PPDO) has some problems
such as rapidly hydrolyt
ic degradation
which is not beneficial to its storage and practical application. Herein
poly(
p
-dioxanone-
co
-
n
-alkyl substituents
δ
-lactone) (PDRVL) copolymers with side chains of different lenghs were synthesized by bulk copolymerization of
p
-dioxanone with
n
-alkyl substituents
δ
-lactone (RVL) under DPP catalysis. The thermal
crystalline and mechanical properties of the copolymers were studied by thermogravimetric analysis (TGA)
differential scanning calorimetry (DSC)
wide angle X-ray diffraction analysis (WXRD) and tensile test. The results show that initial decomposition temperature and maximum decomposition temperature of the copolymers are about 250 and 390 °C
much higher than their melting point (96.2-99.6°C)
indicating that the copolymers can meet the requirements of processing and be used as thermoplastic polymers. The copolymers are semi-crystalline polymers
and their crystallinity (
D
c
) obtained from WXRD is in the range of 34%-38% and decreases with the increasing chain lengh of alkyl substituents of the comonomer. The mechanical properties of the copolymer were controlled by changing the structure of the comonomer. As the chain lengh of alkyl substituents of the comonomer increased from 3 to 7
the elastic modulus of the copolymer decreased from 483.8 MPa to 356.0 MPa
the yield strength decreased from 24.3 MPa to 21.6 MPa
and the elongation at break remained in the range of 212.7%-235.0%.Water contact angle (WCA) and water absorption test show that the introduction of hydrophobic RVL monomer weakened the hydrophilicity of PPDO
and the water absorption of the copolymer decreased with the number of carbon atoms in hydrophobic alkyl substituents of RVL. When the number of carbon atoms in the alkyl substituents was over 3
the copolymer was hydrophobic. The hydrolytic degradation of the copolymers was studied. By testing mass retention rate
the charac
teristic viscosity retention rate
and the sample surface microstructure during the degradation process
it can be concluded that different comonomer structures exert no significant effect on the hydrolytic degradation of copolymers. However
compared with the PPDO homopolymer
the PPDO-based copolymers containing hydrophobic RVL with substituted alkyl chain possessed the significantly delayed hydrolytic degradation.
聚对二氧环己酮正烷基取代δ-内酯开环聚合共聚物水解降解
Poly(p-dioxanone)n-Alkyl substituents δ-LactoneRing-opening polymerizationCopolymerHydrolytic degradation
Chen Xuesi(陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobing(吕小兵), Zhang Liqun(张立群), Zhu Jin(朱锦), Zhang Jun(张军), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Yang K K, Wang X L, Wang Y Z. J Macromol Sci, Polym Rev, 2002, C42(3): 373-398. doi:10.1081/mc-120006453http://dx.doi.org/10.1081/mc-120006453
Yang Keke(杨科珂), Wang Yuzhong(王玉忠). Materials China(中国材料进展), 2011, 30(8): 25-34
Nishida H, Yamashita M, Hattori N, Endo T, Tokiwa Y. Polym Degrad Stabil, 2000, 70(3): 485-496. doi:10.1016/s0141-3910(00)00145-2http://dx.doi.org/10.1016/s0141-3910(00)00145-2
Li X Y, Zhou Q, Wen Z B, Hui Y, Yang K K, Wang Y Z. Polym Degrad Stabil, 2015, 121: 253-260. doi:10.1016/j.polymdegradstab.2015.09.016http://dx.doi.org/10.1016/j.polymdegradstab.2015.09.016
Nishida H, Yamashita M, Endo T. Polym Degrad Stabil, 2002, 78(1): 129-135. doi:10.1016/s0141-3910(02)00126-xhttp://dx.doi.org/10.1016/s0141-3910(02)00126-x
Jiang Z, Azim H, Gross R A, Focarete M L, Scandola M. Biomacromolecules, 2007, 8(7): 2262-2269. doi:10.1021/bm070138ahttp://dx.doi.org/10.1021/bm070138a
Wu G, Chen S C, Liu C W, Wang Y Z. ACS Nano, 2015(9): 4649-4659
Wu G, Wang Z S, Bai Q Y. Macromolecules, 2019, 52(15): 5907-5916. doi:10.1021/acs.macromol.9b00633http://dx.doi.org/10.1021/acs.macromol.9b00633
Liu Z Z, Chen M J, Guo Y Z, Wang X, Zhang L, Zhou J H, Li H M, Shi Q S. Carbohydr Polym, 2019,204: 214-222. doi:10.1016/j.carbpol.2018.10.020http://dx.doi.org/10.1016/j.carbpol.2018.10.020
Nie W C, Xiao Q, Wu J M, Song F, Wang X L, Wang Y Z. Eur Polym J, 2018,108: 76-84. doi:10.1016/j.eurpolymj.2018.08.027http://dx.doi.org/10.1016/j.eurpolymj.2018.08.027
Zhao F, Xu H Y, Xue W, Li Y, Sun J, Wang F J, Jiang G S, Li L C, Wang L. J Biomater Appl, 2020, 35(1): 39-48. doi:10.1177/0885328220912842http://dx.doi.org/10.1177/0885328220912842
Mamun A. Polym Int, 2021, 70(5): 648-655. doi:10.1002/pi.6150http://dx.doi.org/10.1002/pi.6150
Zheng Y, Zhou J, Du F F, Bao Y Z, Shan G R, Zhang L, Dong H B, Pan P J. Cryst Growth Des, 2018, 19(1): 166-176. doi:10.1021/acs.cgd.8b01246http://dx.doi.org/10.1021/acs.cgd.8b01246
Novikova L N, Kola M K, Kingham P J, Ullrich A, Novikov L N. Acta Biomater, 2017, 66: 177-191. doi:10.1016/j.actbio.2017.11.028http://dx.doi.org/10.1016/j.actbio.2017.11.028
Schneiderman D K, Hillmyer M A. Macromolecules, 2016, 49(7): 2419-2428. doi:10.1021/acs.macromol.6b00211http://dx.doi.org/10.1021/acs.macromol.6b00211
Fuoco T, Ahlinder A, Jain S, Mustafa K, Finne-Wistrand A. Biomacromolecules, 2020, 21(1): 188-198. doi:10.1021/acs.biomac.9b01126http://dx.doi.org/10.1021/acs.biomac.9b01126
Fuoco T, Finne-Wistrand A. Biomacromolecules, 2019,20(8): 3171-3180. doi:10.1021/acs.biomac.9b00745http://dx.doi.org/10.1021/acs.biomac.9b00745
Raquez J M, Degée P, Narayan R, Dubois P. Polyme Degrad Stabil, 2004, 86(1): 159-169. doi:10.1016/j.polymdegradstab.2004.04.007http://dx.doi.org/10.1016/j.polymdegradstab.2004.04.007
Bai Wei(白威), Chen Dongliang(陈栋梁), Li Qing(李庆), Zhang Zhiping(张志萍), Xiong Chendong(熊成东). Prog Chem(化学进展), 2009, 21(12): 2696-2703. doi:10.7513/j.issn.1004-7638.2021.06.025http://dx.doi.org/10.7513/j.issn.1004-7638.2021.06.025
Chen S C, Wang X L, Wang Y Z, Yang K K, Zhou Z X, Wu G. J Biomed Mater Res, Part A, 2007, 80A(2): 453-465
0
浏览量
466
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构