浏览全部资源
扫码关注微信
1.内蒙古工业大学化工学院 呼和浩特 010051
2.南开大学药学院
3.化学学院 天津 300350
[ "白杰,男,1977年生. 1999~2003年于内蒙古师范大学化学系获学士学位,2003~2008年于吉林大学化学学院获博士学位;现任内蒙古工业大学化工学院教授、博士生导师. 在国内外学术期刊上发表科研论文120 余篇. 主持多项国家、省部级科研项目,曾获内蒙古自治区优秀科技工作者、青年创新创业创优标兵、草原英才、高等学校青年科技领军人才等. 致力于功能纳米复合材料、聚合物纳米纤维的研究工作." ]
[ "刘遵峰,男,1980年生. 1998~2008年于南开大学化学学院获学士、硕士、博士学位. 2008~2012年在荷兰莱顿大学做博士后、项目科学家. 2013~2015年在美国德克萨斯大学达拉斯分校Ray Baughman组访问研究. 2020年至今任南开大学化学学院研究员、博士生导师. 在《Science》《Science China Materials》等期刊发表论文70余篇. 主持多项国家、省部级自然科学基金,获国家、省部级青年人才计划等. 主要研究方向导电弹性材料和生物复合材料." ]
纸质出版日期:2022-02-20,
网络出版日期:2021-11-24,
收稿日期:2021-08-23,
修回日期:2021-09-13,
移动端阅览
张广昊,黄佳怡,冷雪琪等.纤维型人工肌肉的研究进展[J].高分子学报,2022,53(02):119-132.
Zhang Guang-hao,Huang Jia-yi,Leng Xue-qi,et al.Recent Progress in Fiber Artificial Muscles[J].ACTA POLYMERICA SINICA,2022,53(02):119-132.
张广昊,黄佳怡,冷雪琪等.纤维型人工肌肉的研究进展[J].高分子学报,2022,53(02):119-132. DOI: 10.11777/j.issn1000-3304.2021.21240.
Zhang Guang-hao,Huang Jia-yi,Leng Xue-qi,et al.Recent Progress in Fiber Artificial Muscles[J].ACTA POLYMERICA SINICA,2022,53(02):119-132. DOI: 10.11777/j.issn1000-3304.2021.21240.
近年来,随着人工智能领域的不断发展,柔性机器人开始兴起. 为了满足人们对人机交互和环境适应性的新要求,柔性驱动器作为柔性机器人的关键部件受到了广泛的关注. 人工肌肉作为最常见的柔性驱动器之一,它对外界刺激反应迅速,并且能够响应刺激产生旋转,收缩和伸长等运动. 在各种人工肌肉中,纤维型人工肌肉以其优异的驱动性能和广阔的应用前景引起了越来越多学者的研究兴趣. 本文主要介绍了纤维型人工肌肉的制备机理,总结了纤维型人工肌肉的驱动方式,包括电热驱动、热驱动、电化学驱动、湿度驱动和光驱动,详细介绍了纤维型人工肌肉的研究进展和应用情况,并对未来人工肌肉的发展进行了展望.
In recent years
soft robots have attracted great attention with the continuous development of artificial intelligence. Flexible actuators and artificial muscles
which are the key components of soft robots
have attracted extensive studies in order to meet the requirements of human-machine interaction and environmental adaptability of soft robots. Soft actuators can overcome the drawbacks of traditional actuators
such as complex structure
bulk volume
and rigidity
which also expand new ideas for the development of future intelligent equipment. Artificial muscles
as one of the most common flexible actuators
has aroused extensive research interest. Artificial muscles respond quickly to external stimuli
producing movements such as rotation
contraction
and elongation. Artificial muscles are expected to be widely used in artificial intelligence
intelligent manufacturing
biomedicine
robotics and other fields. Among different kinds of artificial muscles
fiber-based artificial muscles have attracted more and more scholars' interest due to its excellent driving performance and broad application prospect. This review paper mainly introduces the preparation mechanism of fiber artificial muscles
and summarizes the fiber artificial muscles with different driving modes
including electro-driven
thermally driven
electrochemical driven
humidity driven
and light driven. In addition
the research progresses and application of fiber-based artificial muscles are introduced in detail. We also discussed the perspective development of fiber artificial muscle in the future.
人工肌肉纤维驱动器捻曲结构
Artificial musclesFiberActuatorsTwisted structure
Madden J D, Vandesteeg N A, Anquetil P A, Madden P G, Takshi A, Pytel R Z, Lafontaine S R, Wieringa P A, Hunter I W. IEEE J Oceanic Eng , 2004, 29(3): 706-728. doi:10.1109/joe.2004.833135http://dx.doi.org/10.1109/joe.2004.833135
Anderson C V. Sci Rep, 2016, 6(1): 18625. doi:10.1038/srep21855http://dx.doi.org/10.1038/srep21855
Zou M, Li S, Hu X, Leng X, Wang R, Zhou X, Liu Z. Adv Funct Mater, 2021, 31: 2007437. doi:10.1002/adfm.202007437http://dx.doi.org/10.1002/adfm.202007437
Mirfakhrai T, Madden J D W, Baughman R H. Mater Today, 2007, 10(4): 30-38. doi:10.1016/s1369-7021(07)70048-2http://dx.doi.org/10.1016/s1369-7021(07)70048-2
Wang J, Gao D, Lee P S. Adv Mater, 2021, 33(19): 2003088. doi:10.1002/adma.202003088http://dx.doi.org/10.1002/adma.202003088
Mirvakili S M, Hunter I W. Adv Mater, 2017, 29(4): 1604734. doi:10.1002/adma.201604734http://dx.doi.org/10.1002/adma.201604734
Kothera C S, Jangid M, Sirohi J, Wereley N M. J Mech Design, 2009, 131(9): 091010. doi:10.1115/1.3158982http://dx.doi.org/10.1115/1.3158982
Tu Z, Liu W, Wang J, Qiu X, Huang J, Li J, Lou H. Nat Commun, 2021, 12: 2916. doi:10.1038/s41467-021-23204-xhttp://dx.doi.org/10.1038/s41467-021-23204-x
Lu C, Yang Y, Wang J, Fu R, Zhao X, Zhao L, Ming Y, Hu Y, Lin H, Tao X. Nat Commun, 2018, 9: 752. doi:10.1038/s41467-018-03095-1http://dx.doi.org/10.1038/s41467-018-03095-1
Li T, Li G, Liang Y, Cheng T, Dai J, Yang X, Liu B, Zeng Z, Huang Z, Luo Y. Sci Adv, 2017, (3): e1602045. doi:10.1126/sciadv.1602045http://dx.doi.org/10.1126/sciadv.1602045
Ma S, Zhang Y, Liang Y, Ren L, Tian W, Ren L. Adv Funct Mater, 2020, 30(7): 1908508. doi:10.1002/adfm.201908508http://dx.doi.org/10.1002/adfm.201908508
Xie D, Liu J, Kang R, Zuo S. IEEE Robot Autom Lett, 2021, 12(1): 1-11. doi:10.1109/lra.2021.3123747http://dx.doi.org/10.1109/lra.2021.3123747
Spinks G M, Martino N D, Naficy S, Shepherd D J, Foroughi J. Sci Robot, 2021, DOI: 10.1126/scirobotics.abf4788http://dx.doi.org/10.1126/scirobotics.abf4788
Wang H, York P, Chen Y, Russo S, Ranzani T, Walsh C, Wood R. Int J Rob Res, 2021, 40(6-7): 895-922. doi:10.1177/02783649211002545http://dx.doi.org/10.1177/02783649211002545
Pena-Francesch A, Jung H, Demirel M C, Sitti M. Nat Mater, 2020, 19(11): 1230-1235. doi:10.1038/s41563-020-0736-2http://dx.doi.org/10.1038/s41563-020-0736-2
Chen C, Liu Y, He X, Li H, Chen Y, Wei Y, Zhao Y, Ma Y, Chen Z, Zheng X, Liu H. Chem Mater, 2021, 33(3): 987-997. doi:10.1021/acs.chemmater.0c04170http://dx.doi.org/10.1021/acs.chemmater.0c04170
Zou J, Feng M, Ding N, Yan P, Xu H, Yang D, Fang N X, Gu G, Zhu X. Natl Sci Rev, 2021, (8): nwab048. doi:10.21203/rs.3.rs-626162/v1http://dx.doi.org/10.21203/rs.3.rs-626162/v1
Maziz A, Concas A, Khaldi A, Stålhand J, Persson N K, Jager E W. Sci Adv, 2017, 3(1): e1600327. doi:10.1126/sciadv.1600327http://dx.doi.org/10.1126/sciadv.1600327
Park J, Yoo J W, Seo H W, Lee Y, Suhr J, Moon H, Koo J C, Choi H R, Hunt R, Kim K. Smart Mater Struct, 2017, 26(3): 035048. doi:10.1088/1361-665x/aa5323http://dx.doi.org/10.1088/1361-665x/aa5323
Kim O, Shin T J, Park M J. Nat Commun, 2013, 4: 2208. doi:10.1038/ncomms3208http://dx.doi.org/10.1038/ncomms3208
Chun K Y, Kim S H, Shin M K, Kwon C H, Park J, Kim Y T, Spinks G M, Lima M D, Haines C S, Baughman R H. Nat Commun, 2014, 5: 3322. doi:10.1038/ncomms4322http://dx.doi.org/10.1038/ncomms4322
Chen Qiaomei(陈巧梅), Yang Yang(杨洋),Wei Yen(危岩), Ji Yan(吉岩). Acta Polymerica Sinica(高分子学报), 2019, 50(5): 451-468. doi:10.11777/j.issn1000-3304.2019.19004http://dx.doi.org/10.11777/j.issn1000-3304.2019.19004
Burrows M. J Exp Biol, 2009, 212(17): 2844-2855. doi:10.1242/jeb.032326http://dx.doi.org/10.1242/jeb.032326
Wang R, Fang S, Xiao Y, Gao E, Jiang N, Li Y, Mou L, Shen Y, Zhao W, Li S, Fonseca A D, Galvão D S, Chen M, He W, Yu K, Lu H, Wang X, Qian D, Aliev A E, Li N, Haines C S, Liu Z, Mu J, Wang Z, Yin S, Lima M D, An B, Zhou X, Liu Z, Baughman R H. Science, 2019, 366(6462): 216-221. doi:10.1126/science.aax6182http://dx.doi.org/10.1126/science.aax6182
Tung A T, Park B H, Liang D H, Niemeyer G. Sens Actuators A, 2008, (147): 83-92. doi:10.1016/j.sna.2008.03.024http://dx.doi.org/10.1016/j.sna.2008.03.024
Liu Z, Zhang R, Xiao Y, Li J, Chang W, Qian D, Liu Z. Mater Horiz, 2021, (8): 1783-1794. doi:10.1039/d1mh00457chttp://dx.doi.org/10.1039/d1mh00457c
Liu Z, Fang S, Moura F, Ding J, Jiang N, Di J, Zhang M, Lepró X, Galvao D, Haines C, Yuan N, Yin S, Lee D, Wang R, Wang H, Lv W, Dong C, Zhang R, Chen M, Yin Q, Chong Y, Zhang R,Wang X, Lima M D, Ovalle-Robles R, Qian D, Lu H, Baughman R H. Science, 2015, 349(6246): 400-404. doi:10.1126/science.aaa7952http://dx.doi.org/10.1126/science.aaa7952
Dou Y, Wang Z P, He W, Jia T, Liu Z, Sun P, Wen K, Gao E, Zhou X, Hu X, Li J, Fang S, Qian D, Liu Z. Nat Commun, 2019, 10(1): 1-10. doi:10.1038/s41467-019-13257-4http://dx.doi.org/10.1038/s41467-019-13257-4
Zhou X, Fang S, Leng X, Liu Z, Baughman R H. Acc Chem Res, 2021, 54(11):2624-2636. doi:10.1021/acs.accounts.1c00112http://dx.doi.org/10.1021/acs.accounts.1c00112
Guo L, DeWeerth S P. Small, 2010, 6(24): 2847-2852. doi:10.1002/smll.201001456http://dx.doi.org/10.1002/smll.201001456
Leng X, Hu X, Zhao W, An B, Zhou X, Liu Z. Adv Intell Syst, 2021, 3(5): 2000185. doi:10.1002/aisy.202000185http://dx.doi.org/10.1002/aisy.202000185
García-Córdova F, Valero L, Ismail Y A, Otero T F. J Mater Chem, 2011, 21(43): 17265-17272. doi:10.1039/c1jm13374hhttp://dx.doi.org/10.1039/c1jm13374h
Carpi F, Frediani G, Turco S, de Rossi D. Adv Funct Mater, 2011, 21(21): 4152-4158. doi:10.1002/adfm.201101253http://dx.doi.org/10.1002/adfm.201101253
Liu Y, Gao M, Mei S, Han Y, Liu J. Appl Phys Lett, 2013, 103(6): 064101. doi:10.1063/1.4817977http://dx.doi.org/10.1063/1.4817977
Jin K, Zhang S, Zhou S, Qiao J, Song Y, Di J, Zhang D, Li Q. Nanoscale, 2018, 10(17): 8180-8186. doi:10.1039/c8nr01300dhttp://dx.doi.org/10.1039/c8nr01300d
Li M, Qiao J, Zhu C, Hu Y, Wu K, Zeng S, Yang W, Zhang H, Wang Y, Wu Y. ACS Appl Electron Mater, 2021, 3(2): 944-954. doi:10.1021/acsaelm.0c01044http://dx.doi.org/10.1021/acsaelm.0c01044
Yu X, Liu Z, Yang X, Wang Y, Zhang J, Duan J, Liu L, Tang Q. ACS Appl Mater Interfaces, 2021, 13(5): 6642-6649. doi:10.1021/acsami.1c05796http://dx.doi.org/10.1021/acsami.1c05796
Meng J, Hou C, Zhang Q, Li Y, Wang H. Sci China: Technol Sci, 2019, 62(6): 965-970. doi:10.1007/s11431-018-9413-4http://dx.doi.org/10.1007/s11431-018-9413-4
Li L, Wang K, Fan H, Zhu X, Mu J, Yu H, Zhang Q, Li Y, Hou C, Wang H. Mater Horiz, 2021, 8(6): 1711-1721. doi:10.1039/d1mh00135chttp://dx.doi.org/10.1039/d1mh00135c
Foroughi J, Spinks G M, Wallace G G, Oh J, Kozlov M E, Fang S, Mirfakhrai T, Madden J D, Shin M K, Kim S, Ding J, Leng J, Baughman R H. Science, 2011, 334(6055): 494-497. doi:10.1126/science.1211220http://dx.doi.org/10.1126/science.1211220
Li Y, Leng X, Sun J, Zhou X, Wu W, Chen H, Liu Z. Chin Phys B, 2020, 29(4): 048103. doi:10.1088/1674-1056/ab7745http://dx.doi.org/10.1088/1674-1056/ab7745
Kanik M, Orguc S, Varnavides G, Kim J, Benavides T, Gonzalez D, Akintilo T, Tasan C C, Chandrakasan A P, Fink Y, Anikeeva P. Science, 2019, 365(6449): 145-150. doi:10.1109/embc44109.2020.9175600http://dx.doi.org/10.1109/embc44109.2020.9175600
Lee J A, Li N, Haines C S, Kim K J, Lepro X, Ovalle-Robles R, Kim S J, Baughman R H. Adv Mater, 2017, 29(31): 1700870. doi:10.1002/adma.201700870http://dx.doi.org/10.1002/adma.201700870
Haines C S, Lima M D, Li N, Spinks G M, Foroughi J, Madden J D, Kim S H, Fang S, de Andrade M J, Göktepe F. Science, 2014, 343(6173): 868-872. doi:10.1126/science.1246906http://dx.doi.org/10.1126/science.1246906
Lima M D, Li N, De Andrade M J, Fang S, Oh J, Spinks G M, Kozlov M E, Haines C S, Suh D, Foroughi J. Science, 2012, 338(6109): 928-932. doi:10.1126/science.1226762http://dx.doi.org/10.1126/science.1226762
Palmre V, Torop J, Arulepp M, Sugino T, Asaka K, Jänes A, Lust E, Aabloo A. Carbon, 2012, 50(12): 4351-4358. doi:10.1016/j.carbon.2012.04.071http://dx.doi.org/10.1016/j.carbon.2012.04.071
Cheng H, Hu Y, Zhao F, Dong Z, Wang Y, Chen N, Zhang Z, Qu L. Adv Mater, 2014, 26(18): 2909-2913. doi:10.1002/adma.201305708http://dx.doi.org/10.1002/adma.201305708
Xiang C, Yang H, Sun Z, Xue B, Hao L, Rahoman M A, Davis S. Smart Mater Struct, 2017, 26(3): 037004. doi:10.1088/1361-665x/aa5b03http://dx.doi.org/10.1088/1361-665x/aa5b03
Yang S Y, Cho K H, Kim Y, Song M G, Jung H S, Yoo J W, Moon H, Koo J C, Choi H R. Smart Mater Struct, 2017, 26(10): 105025. doi:10.1088/1361-665x/aa84e4http://dx.doi.org/10.1088/1361-665x/aa84e4
Yang X, Wang W, Miao M. ACS Appl Mater Interfaces, 2018, 10(38): 32256-32264. doi:10.1021/acsami.8b12144http://dx.doi.org/10.1021/acsami.8b12144
Jin K, Zhang S, Zhou S, Qiao J, Song Y, Di J, Zhang D, Li Q. Nanoscale, 2018, 10(17): 8180-8186. doi:10.1039/c8nr01300dhttp://dx.doi.org/10.1039/c8nr01300d
Mirvakili S M, Ravandi A R, Hunter I W, Haines C S, Li N, Foroughi J, Nafcy S, Spinks G M, Baughman R H, Madden J D W. Proc SPIE, 2014, 9056: 90560I. doi:10.1117/12.2046411http://dx.doi.org/10.1117/12.2046411
Ghatak A, Mahadevan L. Phys Rev lett, 2005, 95(5): 057801. doi:10.1103/physrevlett.95.057801http://dx.doi.org/10.1103/physrevlett.95.057801
Love A E H. A Treatise on the Mathematical Theory of Elasticity. Cambridge: Cambridge University Press, 2013. 10-327
Mirvakili S M, Hunter I W. ACS Appl Mater Interfaces, 2017, 9(19): 16321-16326. doi:10.1021/acsami.7b02335http://dx.doi.org/10.1021/acsami.7b02335
Wang R, Shen Y, Qian D, Sun J, Zhou X, Wang W, Liu Z. Mater Horiz, 2020, 7(12): 3305-3315. doi:10.1039/d0mh01003khttp://dx.doi.org/10.1039/d0mh01003k
Yuan J, Neri W, Zakri C, Merzeau P, Kratz K, Lendlein A, Poulin P. Science, 2019, 365(6449): 155-158. doi:10.1126/science.aaw3722http://dx.doi.org/10.1126/science.aaw3722
Lee J A, Kim Y T, Spinks G M, Suh D, Lepró X, Lima M D, Baughman R H, Kim S. Nano Lett, 2014, 14(5): 2664-2669. doi:10.1021/nl500526rhttp://dx.doi.org/10.1021/nl500526r
Mu J, De Andrade M J, Fang S, Wang X, Gao E, Li N, Kim S H, Wang H, Hou C, Zhang Q, Zhu M, Qian D, Lu H, Kongahage D, Talebian S, Forough J, Spinks G, Kim H, Ware H T, Sim H, Lee D, Jang Y, Kim S, Baughman R H. Science, 2019, 365(6449): 150-155. doi:10.1016/j.carbon.2019.08.073http://dx.doi.org/10.1016/j.carbon.2019.08.073
Liu Z, Wang Y, Ren Y, Jin G, Zhang C, Chen W, Yan F. Mater Horiz, 2020, 7(3): 811-819. doi:10.1039/c9mh01688khttp://dx.doi.org/10.1039/c9mh01688k
Qiao J, Di J, Zhou S, Jin K, Zeng S, Li N, Fang S, Song Y, Li M, Baughman R H, Li Q. Small, 2018, 14(38): e1801883. doi:10.1002/smll.201801883http://dx.doi.org/10.1002/smll.201801883
Wang Y, Qiao J, Wu K, Yang W, Ren M, Dong L, Zhou Y, Wu Y, Wang X, Yong Z, Di J, Li Q. Mater Horiz, 2020, 7(11):3043-3050. doi:10.1039/d0mh01352hhttp://dx.doi.org/10.1039/d0mh01352h
Chu H, Hu X, Wang Z, Mu J, Li N, Zhou X, Fang S, Haines C S, Park J W, Qin S. Science, 2021, 371(6528): 494-498. doi:10.1126/science.abc4538http://dx.doi.org/10.1126/science.abc4538
Ren M, Qiao J, Wang Y, Wu K, Dong L, Shen X, Zhang H, Yang W, Wu Y, Yong Z,Di J, Li Q. Small, 2021, 17(5): 2006181. doi:10.1002/smll.202006181http://dx.doi.org/10.1002/smll.202006181
He S, Chen P, Qiu L, Wang B, Sun X, Xu Y, Peng H. Angew Chem, 2015, 127(49): 15093-15097. doi:10.1002/ange.201507108http://dx.doi.org/10.1002/ange.201507108
Gu X, Fan Q, Yang F, Cai L, Zhang N, Zhou W, Zhou W, Xie S. Nanoscale, 2016, 8(41): 17881-17886. doi:10.1039/c6nr06185khttp://dx.doi.org/10.1039/c6nr06185k
Sun Y, Wang Y, Hua C, Ge Y, Hou S, Shang Y, Cao A. Carbon, 2018, 132: 394-400. doi:10.1016/j.carbon.2018.02.086http://dx.doi.org/10.1016/j.carbon.2018.02.086
Jia T, Wang Y, Dou Y, Li Y, Jung de Andrade M, Wang R, Fang S, Li J, Yu Z, Qiao R. Adv Funct Mater, 2019, 29(18): 1808241. doi:10.1002/adfm.201808241http://dx.doi.org/10.1002/adfm.201808241
Hu X, Leng X, Jia T, Liu Z. Chin Phys B, 2020, 29(11): 118103. doi:10.1088/1674-1056/abbbdahttp://dx.doi.org/10.1088/1674-1056/abbbda
Leng X, Zhou X, Liu J, Xiao Y, Sun J, Li Y, Liu Z. Mater Horiz, 2021, 8(5): 1538-1546. doi:10.1039/d1mh00234ahttp://dx.doi.org/10.1039/d1mh00234a
Cui Y, Li D, Gong C, Chang C. ACS Nano, 2021, 15(8): 13712-13720. doi:10.1021/acsnano.1c05019http://dx.doi.org/10.1021/acsnano.1c05019
Shi Q, Li J, Hou C, Shao Y, Zhang Q, Li Y, Wang H. Chem Commun, 2017, 53(81): 11118-11121. doi:10.1039/c7cc03408chttp://dx.doi.org/10.1039/c7cc03408c
Madden J D, Cush R A, Kanigan T S, Hunter I W. Synth Met, 2000, 113: 185-192. doi:10.1016/s0379-6779(00)00195-8http://dx.doi.org/10.1016/s0379-6779(00)00195-8
0
浏览量
516
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构